Current Aip Publishing News and Events

Current Aip Publishing News and Events, Aip Publishing News Articles.
Sort By: Most Relevant | Most Viewed
Page 1 of 25 | 1000 Results
Measuring hemoglobin levels with AI microscope, microfluidic chips
A complete blood count can help ascertain the health of a patient and typically includes an estimate of the hemoglobin concentration, which can indicate several conditions, including anemia, polycythemia, and pulmonary fibrosis. In AIP Advances, researchers describe a AI-powered imaging-based tool to estimate hemoglobin levels. The setup was developed in conjunction with a microfluidic chip and an AI-powered automated microscope that was designed for deriving the total as well as differential counts of blood cells. (2021-02-23)

Simply speaking while infected can potentially spread COVID-19
COVID-19 can spread from asymptomatic but infected people through small aerosol droplets in their exhaled breath. Most studies of the flow of exhaled air have focused on coughing or sneezing; however, speaking while near one another is also risky. In Physics of Fluids, scientists used smoke and laser light to study the flow of expelled breath near and around two people conversing in various relative postures commonly found in the service industry. (2021-02-23)

Low-level jets create winds of change for turbines
Global wind power capacity has increased more than fivefold over the past decade, leading to larger turbines, but low-level jets are one cause for concern. The effects of these strong, energetic wind flows depend on how high the wind flows are in relation to the turbines. In the Journal of Renewable and Sustainable Energy, researchers considered three different scenarios in which the LLJs were above, below, and in the middle of the turbine rotors. (2021-02-23)

Distorting memories helps the brain remember
In order to remember similar events, the brain exaggerates the difference between them. This results in divergent brain activity patterns but better memory performance, according to new research published in JNeurosci. (2021-02-22)

FRESH 3D-printing platform paves way for tissues, organs
Research into 3D bioprinting has grown rapidly in recent years as scientists seek to re-create the structure and function of complex biological systems from human tissues to entire organs. In APL Bioengineering, researchers from Carnegie Mellon University provide perspective on the Freefrom Reversible Embedding of Suspended Hydrogels 3D bioprinting approach, which solves the issue of gravity and distortion by printing within a yield-stress support bath that holds the bioinks in place until they are cured. (2021-02-16)

Hydrogel promotes wound healing better than traditional bandages, gauzes
For explosion wounds as well as some incurred in disasters and accidents, severe hemorrhage is a leading cause of death. Hydrogel dressings, which have advanced in recent years, may help; they are good at promoting wound healing and can better meet the demands of different situations. Many are antibacterial, biodegradable, responsive, and injectable and can fill irregularly shaped wounds. In APL Bioengineering, researchers in China examine some of the recent advances. (2021-02-16)

Lower testosterone during puberty increases the brain's sensitivity to it in adulthood
Young men with lower testosterone levels throughout puberty become more sensitive to how the hormone influences the brain's responses to faces in adulthood, according to new research published in JNeurosci. (2021-02-15)

Porous materials unfavorable for coronavirus survival
As COVID-19 spreads via respiratory droplets, researchers have become increasingly interested in the drying of droplets on impermeable and porous surfaces; surfaces that accelerate evaporation can decelerate the spread of the virus. In Physics of Fluids, researchers show a droplet remains liquid for a much shorter time on a porous surface, making it less favorable to survival of the virus. On paper and cloth, the virus survived for only three hours and two days, respectively. (2021-02-09)

Advanced simulations reveal how air conditioning spreads COVID-19 aerosols
A restaurant outbreak in China was widely reported as strong evidence of airflow-induced transmission of COVID-19, but it lacked a detailed investigation about exactly how transmission occurred. In Physics of Fluids, researchers at the University of Minnesota report using advanced simulation methods to capture the complex flows that occur when the cold airflow from air conditioners interacts with the hot plume from a dining table and the transport of virus-loading particles within such flows. (2021-02-09)

School closures may not reduce coronavirus deaths as much as expected
School closures, the loss of public spaces, and having to work remotely due to the coronavirus pandemic have caused major disruptions in people's lives all over the world. After running thousands of simulations of the pandemic response in New York City with variations in social distancing behavior, researchers suggest a reduction in fatal coronavirus cases can be achieved without the need for so much social disruption. They discuss the impacts of the closures in the journal Chaos. (2021-02-09)

Biomaterials could mean better vaccines, virus-fighting surfaces
Advances in the fields of biomaterials and nanotechnology could lead to big breakthroughs in the fight against dangerous viruses like the novel coronavirus that causes COVID-19. In APL Bioengineering, researchers from the Indian Institute of Science describe possibilities being explored by scientists, combining biomaterials and nanotechnology, to make vaccines more effective and build surfaces that could fight and kill viruses on their own. (2021-02-09)

Biosensors require robust antifouling protection
Some promising biosensors and medical devices work well within pristine laboratory environments but may stop working once exposed to real-world conditions. A thick layer of foulants will quickly cover biosensors, and there is no good way to revive them once they quit working. Essentially, a biosensor is only as good as its antifouling properties. In APL Materials, researchers review a variety of approaches developed to combat fouling. (2021-02-02)

Temperature, humidity, wind predict second wave of pandemic
The ''second wave'' of the coronavirus pandemic has placed much blame on a lack of appropriate safety measures. However, due to the impacts of weather, research suggests two outbreaks per year are inevitable. Though face masks, travel restrictions, and social distancing guidelines help slow the number of new infections in the short term, the lack of climate effects incorporated into epidemiological models presents a glaring hole that can cause long-term effects. (2021-02-02)

Why food sticks to nonstick frying pans
Foods will sometimes get stuck to a heated surface, even if oil or a nonstick frying pan is used. Scientists have investigated the fluid properties of oil on a flat surface and their work shows convection may be to blame. When the pan is heated from below, a temperature gradient is established in the oil film, as well as a surface tension gradient. This gradient sets up a type of convection known as thermocapillary convection. (2021-02-02)

Cancer research expands body's own immune system to kill tumors
Scientists are hoping advances in cancer research could lead to a day when a patient's own immune system could be used to fight and destroy a wide range of tumors. Cancer immunotherapy has some remarkable successes, but its effectiveness has been limited to a relatively small handful of cancers. In APL Bioengineering, researchers describe how advances in engineering models of tumors can greatly expand cancer immunotherapy's effectiveness to a wider range of cancers. (2021-02-02)

Constructing the first version of the Japanese reference genome
The Japanese now have their own reference genome thanks to researchers at Tohoku University who completed and released the first Japanese reference genome (JG1). (2021-01-29)

Microwaves used to deactivate coronavirus, flu, other aerosolized viruses
As the pandemic continues, scientists are increasingly focused on developing methods to assist in decontaminating surfaces and spaces. In Review of Scientific Instruments, researchers report on experimental tools capable of presenting electromagnetic waves to an aerosol mixture with the capability to vary power, energy, and frequency of the electromagnetic exposure. The researchers seek to better characterize the threshold levels of microwave energy needed to inactivate aerosolized viral particles and reduce their ability to spread infection. (2021-01-26)

Air purifiers may do more harm than good in confined spaces with airborne viruses
The positions of air inlets and outlets in confined spaces, such as elevators, greatly affect airborne virus transmission. In Physics of Fluids, researchers show air purifiers may actually increase the spread. They use ultraviolet radiation to kill viruses and other microbes, but they also circulate air, sucking it in and exhausting cleaned air. This adds to overall circulation. (2021-01-26)

Musicians have more connected brains than non-musicians
The brains of musicians have stronger structural and functional connections compared to those of non-musicians, regardless of innate pitch ability, according to new research from JNeurosci. (2021-01-25)

Combining best of both worlds for cancer modeling
Treatment options for many types of cancers remain limited, due partly to the in vitro tools used to model cancers and that results from animal studies do not always translate well to human disease. These shortcomings point to a clear need for a better, patient-specific model. Researchers suggest bioengineered microscale organotypic models can address this need. They discuss the advantages and capabilities of this technique, as well as its challenges, in the journal APL Bioengineering. (2021-01-21)

Personalizing cancer care with improved tumor models
While decades of research have resulted in substantial improvements in surviving cancer, a key challenge remains in identifying new drugs that improve outcomes for patients. In APL Bioengineering, researchers suggest a major hurdle is the paucity of models for cancer research that accurately represent patient tumors. They provide a perspective on strategies using models from individual patients and where the field needs to go in terms of research in animal systems and in culture systems. (2021-01-21)

Who's writing open access articles?
Open access (OA) democratizes access to research literature, but OA authors are more likely to be males in STEM fields at wealthier institutions. (2021-01-19)

Eggs reveal what may happen to brain on impact
Our brains consist of soft matter bathed in watery cerebrospinal fluid inside a hard skull, and in Physics of Fluids, researchers describe studying another system with the same features, an egg, to search for answers about concussions. Considering that in most concussive brain injuries, the skull does not break, they wanted to find out if it was possible to break or deform the egg yolk without breaking the eggshell. (2021-01-19)

New insights into wound healing process
Biomedical engineers developed a technique to observe wound healing in real time, discovering a central role for cells known as fibroblasts. The work, reported in APL Bioengineering, is the first demonstration of a wound closure model within human vascularized tissue in a petri dish. (2021-01-19)

DNA origami enables fabricating superconducting nanowires
In AIP Advances, researchers describe how to exploit DNA origami as a platform to build superconducting nanoarchitectures. The structures they built are addressable with nanometric precision that can be used as a template for 3D architectures that are not possible today via conventional fabrication techniques. Inspired by previous works using the DNA molecule as a template for superconducting nanowires, the group took advantage of a recent bioengineering advance known as DNA origami. (2021-01-19)

Fastener with microscopic mushroom design holds promise
A fastener with a microscopic design that looks like tiny mushrooms could mean advances for everyday consumers and scientific fields. Currently available fasteners are called hook and loop fasteners and require harder, stiff material. In Biointerphases, researchers describe a design that can use softer materials and still be strong. The team believes a 3D mushroom design can be made with softer, more flexible materials and provide sufficient interlocking force on the fabric and hold strong. (2021-01-19)

The brain region responsible for self-bias in memory
A brain region involved in processing information about ourselves biases our ability to remember, according to new research published in JNeurosci. (2021-01-18)

Wearable electronics for continuous cardiac, respiratory monitoring
A small and inexpensive sensor, announced in Applied Physics Letters and based on an electrochemical system, could potentially be worn continuously by cardiac patients or others who require constant monitoring. A solution containing electrolyte substances is placed into a small circular cavity that is capped with a thin flexible diaphragm, allowing detection of subtle movements when placed on a patient's chest. The authors suggest their sensor could be used for diagnosis of respiratory diseases. (2021-01-12)

Disposable helmet retains cough droplets, minimizes transmission to dentists
Dentists and otolaryngologists are at particular risk of infection of COVID-19, since they need direct access to the mouth, nose, and throat of patients. The current solutions are expensive, not highly effective, and not very accessible. In Physics of Fluids, researchers discuss their design of an open-faced helmet that is connected to a medical-grade air filtration pump from the top that creates a reverse flow of air to prevent cough droplets from exiting the helmet. (2021-01-12)

Can sodium-ion batteries replace trusty lithium-ion ones?
Sodium-ion batteries are a potential replacement for lithium batteries, but different anodes are needed for the same level of performance. Amorphous carbon is known to be a useful anode, because it has defects and voids that can be used to store sodium ions. Nitrogen/phosphorus-doped carbon also offers appealing electrical properties. In Applied Physics Reviews, researchers describe how they applied basic physical concepts of atomic scale to build high-performance anodes for sodium-ion batteries. (2021-01-12)

Singing a tumor test song
Singing may be the next-generation, noninvasive approach to determining the health of a patient's thyroid. When a person sings, the vibrations create waves in the tissue near the vocal tract called shear waves. If a tumor is present in the thyroid, the elasticity of its surrounding tissue increases, stiffening, and causing the shear waves to accelerate. Using ultrasound imaging to measure these waves, researchers can determine the elasticity of the thyroid tissue. (2021-01-12)

Imagining a face reactivates face-detecting neurons in humans
Face-sensitive neurons in humans employ distinct activity patterns to encode individual faces; those patterns reactivate when imagining the face, according to research recently published in JNeurosci. (2021-01-11)

An analysis of 145 journals suggests peer review itself may not explain gender discrepancies in publication rates
An analysis of 145 scholarly journals found that, among various factors that could contribute to gender bias and lesser representation of women in science, the peer review process itself is unlikely to be the primary cause of publishing inequalities. However, Flaminio Squazzoni and colleagues emphasize that the study does not account for many other factors. (2021-01-06)

The brain network driving changes in consciousness
The loss and return of consciousness is linked to the same network of brain regions for both sleep and anesthesia, according to new research published in JNeurosci. (2020-12-28)

Cornell University to extract energy from manure to meet peak heating demands
Cornell University is developing a system to extract energy from cattle manure to meet the campus's peak demands for heat in the winter months. In the Journal of Renewable and Sustainable Energy, scientists involved with the project give a detailed analysis of the issues required to make this work, including scientific, economic, and energy policy considerations. (2020-12-22)

Hand-held device measures aerosols for coronavirus risk assessment
Understanding aerosol concentrations and persistence in public spaces can help determine infection risks. However, measuring these concentrations is difficult, requiring specialized personnel and equipment. Now, researchers demonstrate that a commercial hand-held particle counter can be used for this purpose and help determine the impacts of risk-reducing measures, like ventilation improvements. They describe the quick and easy, portable process in the journal Physics of Fluids. (2020-12-22)

Masks not enough to stop COVID-19's spread without distancing
Wearing a mask may not be enough to prevent the spread of COVID-19 without social distancing. In Physics of Fluids, researchers tested how different types of mask impacted the spread of droplets that carry the coronavirus when we cough or sneeze. Every material tested dramatically reduced the number of droplets that were spread. But at distances of less than 6 feet, enough droplets to potentially cause illness still made it through several of the materials. (2020-12-22)

Controlling cardiac waves with light to better understand abnormally rapid heart rhythms
Over 300,000 people die each year in the US due to sudden cardiac death. In many cases, sudden cardiac death is caused by abnormally rapid heart rhythms called tachycardias, which means the heart cannot pump adequate blood to the body. In Chaos, researchers use mice to study tachycardias and find there are intrinsic mechanisms that exist in heart tissue that they hypothesize lead to the self-termination of rapid cardiac rhythm. (2020-12-22)

Targeted brain stimulation dulls social pain
Pairing brain stimulation with an emotion management technique blunts negative emotions, according to research recently published in JNeurosci. The combination may improve emotional regulation in people with psychiatric disorders. (2020-12-21)

Fast walking in narrow corridors can increase COVID-19 transmission risk
Simulations have been used to predict droplet dispersal patterns in situations where COVID-19 might be spread and results in Physics of Fluids show the importance of the space shape in modeling how droplets move. The simulations are used to determine flow patterns behind a walking individual in spaces of different shape. The results reveal a higher transmission risk for children in some instances, such as behind quickly moving people in a long narrow hallway. (2020-12-15)

Page 1 of 25 | 1000 Results
   First   Previous   Next      Last   
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.