Current Atomic Force Microscope News and Events

Current Atomic Force Microscope News and Events, Atomic Force Microscope News Articles.
Sort By: Most Relevant | Most Viewed
Page 1 of 25 | 1000 Results
Measuring hemoglobin levels with AI microscope, microfluidic chips
A complete blood count can help ascertain the health of a patient and typically includes an estimate of the hemoglobin concentration, which can indicate several conditions, including anemia, polycythemia, and pulmonary fibrosis. In AIP Advances, researchers describe a AI-powered imaging-based tool to estimate hemoglobin levels. The setup was developed in conjunction with a microfluidic chip and an AI-powered automated microscope that was designed for deriving the total as well as differential counts of blood cells. (2021-02-23)

Big galaxies steal star-forming gas from their smaller neighbours
In research published today, astronomers have discovered that large galaxies are stealing the material that their smaller counterparts need to form new stars. (2021-02-22)

Atomic nuclei in the quantum swing
The extremely precise control of nuclear excitations opens up possibilities of ultra-precise atomic clocks and powerful nuclear batteries. (2021-02-19)

Investigating the wave properties of matter with vibrating molecules
The working group led by Prof. Stephan Schiller, Ph.D. from Heinrich Heine University Düsseldorf (HHU) has used a novel, high-precision laser spectroscopic experiment to measure the internal vibration of the simplest molecule. This allowed the researchers to investigate the wave character of the motion of atomic nuclei with unprecedented accuracy. They present their findings in the current edition of Nature Physics. (2021-02-18)

A 'twisted elevator' could be key to understanding neurological diseases
For the first time, researchers have found one of the most important molecular machines in our cells uses a 'twisting elevator' mechanism, solving a mystery of how it transports crucial chemical signals from one cell to another. (2021-02-17)

Dual character of excitons in the ultrafast regime: atomic-like or solid-like?
Researchers at Politecnico di Milano in collaboration with the Institute of Photonics and Nanotechnologies IFN-CNR and a theory group from the Tsukuba University (Japan) and the Max Plank Institute for the Structure and Dynamics of matter (Hamburg, Germany), have discovered that an exciton can simultaneously adopt two radically different characters when it isstimulated by light. (2021-02-15)

Kagome graphene promises exciting properties
For the first time, physicists from the University of Basel have produced a graphene compound consisting of carbon atoms and a small number of nitrogen atoms in a regular grid of hexagons and triangles. This honeycomb-structured ''kagome lattice'' behaves as a semiconductor and may also have unusual electrical properties. In the future, it could potentially be used in electronic sensors or quantum computers. (2021-02-15)

Move over heavy goggles, here come the ultra-high refractive index lenses
POSTECH professor Junsuk Rho's research team develops a transparent silicon without visible light loss by controlling the silicon atomic structure. (2021-02-14)

Scientists manipulate magnets at the atomic scale
Fast and energy-efficient future data processing technologies are on the horizon after an international team of scientists successfully manipulated magnets at the atomic level. Physicist Dr Rostislav Mikhaylovskiy from Lancaster University said: ''With stalling efficiency trends of current technology, new scientific approaches are especially valuable. Our discovery of the atomically-driven ultrafast control of magnetism opens broad avenues for fast and energy-efficient future data processing technologies essential to keep up with our data hunger.'' (2021-02-12)

Swirlonic super particles baffle physicists
We report a novel state of active matter--a swirlonic state. It is comprised of swirlons, formed by groups of active particles orbiting their common center of mass. (2021-02-11)

Big data reveal threats to minorities policed by white and male officers
Using a dataset on daily patrols and enforcement activities of officers in the Chicago Police Department (CPD) - an agency that has undergone substantial diversification in recent decades - researchers report Black officers used force less often than white officers during the three-year period studied, and women used force less often than men. (2021-02-11)

Scientists suggested using non-symmetrical magnets for target drug delivery
A team of scientists from Immanuel Kant Baltic Federal University and the University of Genoa suggested combining permanent magnets of different shapes to target magnetic particles with drugs at the organs of lab mice. Such a combination secured a magnetic driving force that was ten times stronger compared to regular cylindrical magnets. (2021-02-09)

'Defective' carbon simplifies hydrogen peroxide production
Rice University scientists introduce a new catalyst to reduce oxygen to widely used hydrogen peroxide. The process sidesteps complex and expensive processes that generate toxic organic byproducts and large amounts of wastewater. (2021-02-09)

Two-phase material with surprising properties
Some materials can couple electrical and mechanical properties - this can lead to astonishing effects: New materials have been developed, consisting of both crystalline and amorphous regions. In these special polymers, the electro-mechanical coupling suddenly disappers - scientits at TU Wien have found out how. (2021-02-08)

Tiny sensor technique reveals cellular forces involved in tissue generation
A team of Brown University researchers developed a technique that uses tiny polymer spheres to sense the forces at play as body tissue forms and grows. (2021-02-05)

New microscopy concept enters into force
The first demonstration of an approach that inverts the standard paradigm of scanning probe microscopy raises the prospect of force sensing at the fundamental limit. (2021-02-05)

How metal atoms can arrange themselves on an insulator
In order to produce tiny electronic memories or sensors in future, it is essential to be able to arrange individual metal atoms on an insulating layer. Scientists at Bielefeld University's Faculty of Chemistry have now demonstrated that this is possible at room temperature: molecules of the metal-containing compound molybdenum acetate form an ordered structure on the insulator calcite without jumping to other positions or rotating. Their findings have been presented in the Nature Communications journal. (2021-02-04)

SARS-CoV-2 under the helium ion microscope for the first time
Scientists at Bielefeld University's Faculty of Physics have succeeded for the first time in imaging the SARS-CoV-2 coronavirus with a helium ion microscope. In contrast to the more conventional electron microscopy, the samples do not need a thin metal coating in helium ion microscopy. This allows interactions between the coronaviruses and their host cell to be observed particularly clearly. The findings have been published in the Beilstein Journal of Nanotechnology. (2021-02-04)

Quasicrystal-clear: Material reveals unique shifting surface structure under microscope
Ever since their discovery, quasicrystals have garnered much attention due to their strange structure. Today, they remain far from being well-understood. In a new study, scientists reveal, for the first time, a unique shifting surface atomic structure in a material emulating quasicrystals, opening doors to the better understanding of magnetic and superconducting properties of quasicrystals, and potential applications in semiconductor film growth. (2021-02-04)

Imaging technique provides link to innovative products
A study led by University of Georgia researchers announces the successful use of a new nanoimaging technique that will allow researchers to test and identify two-dimensional materials (2021-02-04)

Imaging the first moments of a body plan emerging in the embryo
Egg cells start out as round blobs. After fertilization, they begin transforming into people, dogs, fish, or other animals by orienting head to tail, back to belly, and left to right. Exactly what sets these body orientation directions has been guessed at but not seen. Now researchers at the Marine Biological Laboratory (MBL) have imaged the very beginning of this cellular rearrangement, and their findings help answer a fundamental question. (2021-02-04)

Tiny 3D structures enhance solar cell efficiency
A new method for constructing special solar cells could significantly increase their efficiency. Not only are the cells made up of thin layers, they also consist of specifically arranged nanoblocks. This has been shown in a new study by an international research team led by the Martin Luther University Halle-Wittenberg (MLU), which was published in the scientific journal ''Nano Letters''. (2021-02-02)

Soldiers, snakes and marathon runners in the hidden world of fungi
Researchers at Lund University in Sweden have discovered the individual traits of fungi, and how their hyphae - that is, the fungal threads that grow in soil - behave very differently as they navigate through the earth's microscopic labyrinths. (2021-02-02)

USPSTF recommends against screening for asymptomatic carotid artery stenosis in general population
The U.S. Preventive Services Task Force (USPSTF) recommends against screening for asymptomatic carotid artery stenosis in the general adult population. Carotid artery stenosis is the narrowing of arteries that supply blood to the brain. This recommendation applies to adults without a history of transient ischemic attack, stroke or other neurologic signs or symptoms related to the carotid arteries. (2021-02-02)

A show of force: Novel polymer that toughens up and changes color upon mechanical stress
Scientists at Tokyo Institute of Technology (Tokyo Tech) developed a polymer whose properties change markedly after being exposed to mechanical stress. In bulk form, the mechano-responsive polymer shows color changing, fluorescence, and self-strengthening abilities even under simple compression or extension. These fundamental findings are unprecedented in the field of mechanochemistry and could pave the way for numerous applications in materials science. (2021-02-02)

Solving complex physics problems at lightning speed
A calculation so complex that it takes twenty years to complete on a powerful desktop computer can now be done in one hour on a regular laptop. Physicist Andreas Ekström at Chalmers University of Technology, together with international research colleagues, has designed a new method to calculate the properties of atomic nuclei incredibly quickly. (2021-02-01)

Skoltech imaging resources used in international experiment with new photocatalysts
Skoltech researchers helped their colleagues from Japan, Germany, the United States, and China study the crystal structure and optical properties of a new class of two-dimensional compounds, which can be used as effective visible-light-responsive photocatalysts for energy and chemical conversion. They used the Advanced Imaging Core Facility equipment for imaging and structural analysis. (2021-02-01)

Paving the way for effective field theories
This special issue, published in EPJ A, presents a coherent collection of work by theoretical experts from around the world regarding the use of effective field theories. Several unanswered questions are addressed and clarified, leading to detailed assessments of the philosophical foundations of effective field theories. (2021-02-01)

Physics of snakeskin sheds light on sidewinding
Sidewinders' bellies are studded with tiny pits and have few, if any, of the tiny spikes found on the bellies of other snakes. The discovery includes a mathematical model linking these distinct structures to function. (2021-02-01)

UArizona researchers develop smartphone-based COVID-19 test
The team is adapting a smartphone-based method -- originally designed to detect the presence of norovirus -- for COVID-19 testing. (2021-01-29)

Dewdrops on a spiderweb reveal the physics behind cell structures
Researchers in the laboratories of Princeton University scientists Joshua Shaevitz, Howard Stone, and Sabine Petry have discovered that surface tension drives the liquid-like protein TPX2 to form globules that nucleate the formation of branching microtubules during cell division. The paper detailing these discoveries appeared in the Jan 28 issue of the journal Nature Physics. (2021-01-29)

Researchers reveal in-situ manipulation of active Au-TiO2 interface
An international joint research team from the Shanghai Advanced Research Institute of the Chinese Academy of Sciences, along with Zhejiang University and the Technical University of Denmark, reported an in-situ strategy to manipulate interfacial structure with atomic precision during catalytic reactions. (2021-01-28)

How heavy is dark matter? Scientists radically narrow the potential mass range for the first time
Scientists have calculated the mass range for Dark Matter - and it's tighter than the science world thought. (2021-01-27)

VCU technology could upend DNA sequencing for diagnosing certain DNA mutations
Doctors are increasingly using genetic signatures to diagnose diseases and determine the best course of care, but using DNA sequencing and other techniques to detect genomic rearrangements remains costly or limited in capabilities. However, an innovative breakthrough developed by researchers at Virginia Commonwealth University Massey Cancer Center and the VCU Department of Physics promises to diagnose DNA rearrangement mutations at a fraction of the cost with improved accuracy. (2021-01-27)

Study: Sudden police layoffs in one US city associated with increases in crime
A new study examined the effects on crime of budget shortfalls in two New Jersey cities--one of which laid off more than 10 percent of its police force while the other averted layoffs. The study found that the police layoffs were associated with significant increases in overall crime, violent crime, and property crime. (2021-01-27)

Tungsten-substituted vanadium oxide breathes fresh air into catalyst technology
Tokyo, Japan - Researchers from Tokyo Metropolitan University have created a new tungsten-substituted vanadium oxide catalyst for breaking down harmful nitrogen oxides in industrial exhaust. Their new catalyst material works at lower temperatures and does not suffer major drops in performance when processing ''wet'' exhaust, resolving a major drawback in conventional vanadium oxide catalysts. They found that the unaggregated dispersal of atomic tungsten in the original crystal structure plays a key role in how it functions. (2021-01-26)

Beauty in imperfection: How crystal defects can help convert waste heat into electricity
Half-Heusler Ni-based alloys are thermoelectric materials with the potential for converting waste heat into electricity. However, the origin of their impressive conversion efficiency is not entirely clear. In a recent study, scientists from Japan and Turkey have attempted to uncover the role that Ni defects have in the crystal structure of these alloys and how their desirable thermoelectric properties are a consequence of small changes in strain around defective sites. (2021-01-26)

Nuclear physicist's voyage towards a mythical island
Theories were introduced as far back as the 1960s about the possible existence of superheavy elements. Their most long-lived atomic nuclei could give rise to a so-called ''island of stability'' far beyond the element uranium. However, a new study, led by nuclear physicists at Lund University, shows that a 50-year-old nuclear physics manifesto must now be revised. (2021-01-26)

Researchers use nanomaterials to make 2D diamond clusters at room temperature
2D hexagonal boron nitride (h-BN) is a promising material that can undergo transition to strong, super lightweight films. Researchers at the NYU Tandon School of Engineering led by Elisa Riedo have discovered that h-BN in layered, molecule-thin 2D sheets can phase transition to c-BN at room temperature. (2021-01-26)

Smart algorithm cleans up images by searching for clues buried in noise
In a new study published in Nature Machine Intelligence, researchers at Texas A&M University have unveiled a machine learning-based algorithm that can reduce graininess in low-resolution images and reveal new details that were otherwise buried within the noise. (2021-01-26)

Page 1 of 25 | 1000 Results
   First   Previous   Next      Last   
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.