Current Atomic Nuclei News and Events

Current Atomic Nuclei News and Events, Atomic Nuclei News Articles.
Sort By: Most Relevant | Most Viewed
Page 1 of 25 | 1000 Results
The perfect recipe for efficient perovskite solar cells
A long-cherished dream of materials researchers is a solar cell that converts sunlight into electrical energy as efficiently as silicon, but that can be easily and inexpensively fabricated from abundant materials. Scientists at the Helmholtz-Zentrum Berlin have now come a step closer to achieving this. (2021-02-22)

Big galaxies steal star-forming gas from their smaller neighbours
In research published today, astronomers have discovered that large galaxies are stealing the material that their smaller counterparts need to form new stars. (2021-02-22)

Atomic nuclei in the quantum swing
The extremely precise control of nuclear excitations opens up possibilities of ultra-precise atomic clocks and powerful nuclear batteries. (2021-02-19)

Physics of tumours: Cancer cells become fluidised and squeeze through tissue
Working with colleagues from Germany and the US, researchers at Leipzig University have achieved a breakthrough in research into how cancer cells spread. The team of biophysicists led by Professor Josef Alfons Käs, Steffen Grosser and Jürgen Lippoldt demonstrated for the first time how cells deform in order to move in dense tumour tissues and squeeze past neighbouring cells. They have now published their findings in 'Physical Review X'. (2021-02-18)

Investigating the wave properties of matter with vibrating molecules
The working group led by Prof. Stephan Schiller, Ph.D. from Heinrich Heine University Düsseldorf (HHU) has used a novel, high-precision laser spectroscopic experiment to measure the internal vibration of the simplest molecule. This allowed the researchers to investigate the wave character of the motion of atomic nuclei with unprecedented accuracy. They present their findings in the current edition of Nature Physics. (2021-02-18)

Light used to detect quantum information stored in 100,000 nuclear quantum bits
Researchers have found a way to use light and a single electron to communicate with a cloud of quantum bits and sense their behaviour, making it possible to detect a single quantum bit in a dense cloud. (2021-02-15)

Dual character of excitons in the ultrafast regime: atomic-like or solid-like?
Researchers at Politecnico di Milano in collaboration with the Institute of Photonics and Nanotechnologies IFN-CNR and a theory group from the Tsukuba University (Japan) and the Max Plank Institute for the Structure and Dynamics of matter (Hamburg, Germany), have discovered that an exciton can simultaneously adopt two radically different characters when it isstimulated by light. (2021-02-15)

Move over heavy goggles, here come the ultra-high refractive index lenses
POSTECH professor Junsuk Rho's research team develops a transparent silicon without visible light loss by controlling the silicon atomic structure. (2021-02-14)

Scientists manipulate magnets at the atomic scale
Fast and energy-efficient future data processing technologies are on the horizon after an international team of scientists successfully manipulated magnets at the atomic level. Physicist Dr Rostislav Mikhaylovskiy from Lancaster University said: ''With stalling efficiency trends of current technology, new scientific approaches are especially valuable. Our discovery of the atomically-driven ultrafast control of magnetism opens broad avenues for fast and energy-efficient future data processing technologies essential to keep up with our data hunger.'' (2021-02-12)

Two-phase material with surprising properties
Some materials can couple electrical and mechanical properties - this can lead to astonishing effects: New materials have been developed, consisting of both crystalline and amorphous regions. In these special polymers, the electro-mechanical coupling suddenly disappers - scientits at TU Wien have found out how. (2021-02-08)

How metal atoms can arrange themselves on an insulator
In order to produce tiny electronic memories or sensors in future, it is essential to be able to arrange individual metal atoms on an insulating layer. Scientists at Bielefeld University's Faculty of Chemistry have now demonstrated that this is possible at room temperature: molecules of the metal-containing compound molybdenum acetate form an ordered structure on the insulator calcite without jumping to other positions or rotating. Their findings have been presented in the Nature Communications journal. (2021-02-04)

Iodine oxoacids drive rapid aerosol formation in pristine atmospheric areas
Iodine plays a bigger role than thought in rapid new particle formation (NPF) in relatively pristine regions of the atmosphere, such as along marine coasts, in the Arctic boundary layer or in the upper free troposphere, according to a new study. (2021-02-04)

Imaging technique provides link to innovative products
A study led by University of Georgia researchers announces the successful use of a new nanoimaging technique that will allow researchers to test and identify two-dimensional materials (2021-02-04)

Charge radii of exotic potassium isotopes challenge nuclear structure theory
In nuclear physics so-called magic number are such nuclear proton and/or neutron numbers, for which the nucleus is more stable compared to neighboring isotopes on the nuclear chart. An international research team studied the nuclear charge radii of potassium isotopes. Isotopes were studied by using the collinear resonance ionization spectroscopy technique. The results indicated that the potassium isotope with a neutron number of 32 does not conform with criteria of magic neutron number. The results were published in Nature Physics journal. (2021-02-04)

In symbiosis: Plants control the genetics of microbes
Researchers from the University of Ottawa have discovered that plants may be able to control the genetics of their intimate root symbionts - the organism with which they live in symbiosis - thereby providing a better understanding of their growth. In addition to having a significant impact on all terrestrial ecosystems, their discovery may lead to improved eco-friendly agricultural applications. (2021-02-04)

"Ghost particle" ML model permits full quantum description of the solvated electron
Pinning down the nature of bulk hydrated electrons has proven difficult experimentally because of their short lifetime and high reactivity. Theoretical exploration has been limited by the high level of electronic structure theory needed to achieve predictive accuracy. Now, joint work from teams at the University of Zurich and EPFL has resulted in a highly accurate machine-learning model inexpensive enough to allow for a full quantum statistical and dynamical description. (2021-02-03)

Solving complex physics problems at lightning speed
A calculation so complex that it takes twenty years to complete on a powerful desktop computer can now be done in one hour on a regular laptop. Physicist Andreas Ekström at Chalmers University of Technology, together with international research colleagues, has designed a new method to calculate the properties of atomic nuclei incredibly quickly. (2021-02-01)

Paving the way for effective field theories
This special issue, published in EPJ A, presents a coherent collection of work by theoretical experts from around the world regarding the use of effective field theories. Several unanswered questions are addressed and clarified, leading to detailed assessments of the philosophical foundations of effective field theories. (2021-02-01)

A full-scale prototype for muon tomography
In this article of EPJ Plus, researchers build on previous studies into detection technologies and reconstruction algorithms for muon tomography, to develop a full-scale muon tomograph prototype. (2021-02-01)

Dalian coherent light source reveals the origin of interstellar medium S2 fragments
Researchers observed the C+S2 product channel from CS2 photodissociation for the first time using a home-made Time-Sliced Velocity Map Ion Imaging (TS-VMI) experimental setup, based on the Dalian Coherent Light Source (DCLS). (2021-01-28)

New concept for rocket thruster exploits the mechanism behind solar flares
A new type of rocket thruster that could take humankind to Mars and beyond has been proposed by a physicist at PPPL. The device would apply magnetic fields to cause particles of plasma to shoot out the back of a rocket and propel the craft forward. (2021-01-28)

Researchers reveal in-situ manipulation of active Au-TiO2 interface
An international joint research team from the Shanghai Advanced Research Institute of the Chinese Academy of Sciences, along with Zhejiang University and the Technical University of Denmark, reported an in-situ strategy to manipulate interfacial structure with atomic precision during catalytic reactions. (2021-01-28)

Size of helium nucleus measured more precisely than ever before
In experiments at the Paul Scherrer Institute PSI, an international research collaboration has measured the radius of the atomic nucleus of helium five times more precisely than ever before. With the aid of the new value, fundamental physical theories can be tested and natural constants can be determined even more precisely (2021-01-27)

VCU technology could upend DNA sequencing for diagnosing certain DNA mutations
Doctors are increasingly using genetic signatures to diagnose diseases and determine the best course of care, but using DNA sequencing and other techniques to detect genomic rearrangements remains costly or limited in capabilities. However, an innovative breakthrough developed by researchers at Virginia Commonwealth University Massey Cancer Center and the VCU Department of Physics promises to diagnose DNA rearrangement mutations at a fraction of the cost with improved accuracy. (2021-01-27)

Cell death shines a light on the origins of complex life
Organelles continue to thrive after the cells within which they exist die, a team of University of Bristol scientists have found, overturning previous assumptions that organelles decay too quickly to be fossilised. (2021-01-27)

Tungsten-substituted vanadium oxide breathes fresh air into catalyst technology
Tokyo, Japan - Researchers from Tokyo Metropolitan University have created a new tungsten-substituted vanadium oxide catalyst for breaking down harmful nitrogen oxides in industrial exhaust. Their new catalyst material works at lower temperatures and does not suffer major drops in performance when processing ''wet'' exhaust, resolving a major drawback in conventional vanadium oxide catalysts. They found that the unaggregated dispersal of atomic tungsten in the original crystal structure plays a key role in how it functions. (2021-01-26)

Beauty in imperfection: How crystal defects can help convert waste heat into electricity
Half-Heusler Ni-based alloys are thermoelectric materials with the potential for converting waste heat into electricity. However, the origin of their impressive conversion efficiency is not entirely clear. In a recent study, scientists from Japan and Turkey have attempted to uncover the role that Ni defects have in the crystal structure of these alloys and how their desirable thermoelectric properties are a consequence of small changes in strain around defective sites. (2021-01-26)

Change of course on the journey to the island of stability
An international research team succeeded in gaining new insights into the artificially produced superheavy element flerovium, element 114, at the accelerator facilities of the GSI Helmholtzzentrum für Schwerionenforschung in Darmstadt, Germany. Under the leadership of Lund University in Sweden and with significant participation of Johannes Gutenberg University Mainz (JGU) as well as the Helmholtz Institute Mainz (HIM) in Germany and other partners, flerovium was produced and investigated to determine whether it has a closed proton shell. (2021-01-26)

Nuclear physicist's voyage towards a mythical island
Theories were introduced as far back as the 1960s about the possible existence of superheavy elements. Their most long-lived atomic nuclei could give rise to a so-called ''island of stability'' far beyond the element uranium. However, a new study, led by nuclear physicists at Lund University, shows that a 50-year-old nuclear physics manifesto must now be revised. (2021-01-26)

Compelling evidence of neutrino process opens physics possibilities
The COHERENT particle physics experiment at the Department of Energy's Oak Ridge National Laboratory has firmly established the existence of a new kind of neutrino interaction. Because neutrinos are electrically neutral and interact only weakly with matter, the quest to observe this interaction drove advances in detector technology and has added new information to theories aiming to explain mysteries of the cosmos. (2021-01-26)

Single atoms as a catalyst: Surprising effects ensue
Catalysts are getting smaller - ''single-atom'' catalysts are the logical end point of this downsizing. However, individual atoms can no longer be described using the rules developed from larger pieces of metal, so the rules used to predict which metals will be good catalysts must be revamped - this has now been achieved at TU Wien. As it turns out, single atom catalysts based on much cheaper materials might be even more effective. (2021-01-22)

Crystal close up
Two novel techniques, atomic-resolution real-time video and conical carbon nanotube confinement, allow researchers to view never-before-seen details about crystal formation. The observations confirm theoretical predictions about how salt crystals form and could inform general theories about the way in which crystal formation produces different ordered structures from an otherwise disordered chemical mixture. (2021-01-21)

Alpha particles lurk at the surface of neutron-rich nuclei
Scientists from an international collaboration have found evidence of alpha particles at the surface of neutron-rich heavy nuclei, providing new insights into the structure of neutron stars, as well as the process of alpha decay. (2021-01-21)

Squeezing a rock-star material could make it stable enough for solar cells
A promising lead halide perovskite is great at converting sunlight to electricity, but it breaks down at room temperature. Now scientists have discovered how to stabilize it with pressure from a diamond anvil cell. The required pressure is well within the reach of industrial manufacturing requirements. (2021-01-21)

Scientists reveal structure of plants' energy generators
Researchers have revealed the first atomic structures of the respiratory apparatus that plants use to generate energy, according to a study published today in eLife. (2021-01-19)

What stops flows in glassy materials?
Researchers from the Institute of Mechanics of the Chinese Academy of Sciences and Hong Kong University of Science and Technology recently conducted experimental studies for the first time on glassy systems composed of nonspherical particles. (2021-01-17)

Filling a crucial gap in aquafarming: ion beam breeding to the rescue
Researchers at RIKEN, Japan successfully created a larger strain of zooplankton by creating mutations with a heavy ion beam, which contributes to improving the survival rate and growth of juvenile fish in aquaculture. (2021-01-15)

Scientists' discovery is paving the way for novel ultrafast quantum computers
Scientists at the Institute of Physics of the University of Tartu have found a way to develop optical quantum computers of a new type. Central to the discovery are rare earth ions that have certain characteristics and can act as quantum bits. These would give quantum computers ultrafast computation speed and better reliability compared to earlier solutions. The University of Tartu researchers Vladimir Hizhnyakov, Vadim Boltrushko, Helle Kaasik and Yurii Orlovskii published the results of their research in the scientific journal Optics Communications. (2021-01-15)

Helium nuclei at the surface of heavy nuclei discovered
Scientists are able to selectively knockout nucleons and preformed nuclear clusters from atomic nuclei using high-energy proton beams. In an experiment the existence of preformed helium nuclei at the surface of several tin isotopes could be identified in a reaction. The results confirm a theory, which predicts the formation of helium clusters in low-density nuclear matter and at the surface of heavy nuclei. (2021-01-15)

Conductive nature in crystal structures revealed at magnification of 10 million times
In groundbreaking materials research, a team led by University of Minnesota Professor K. Andre Mkhoyan has made a discovery that blends the best of two sought-after qualities for touchscreens and smart windows--transparency and conductivity. (2021-01-15)

Page 1 of 25 | 1000 Results
   First   Previous   Next      Last   
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.