Current Batteries News and Events

Current Batteries News and Events, Batteries News Articles.
Sort By: Most Relevant | Most Viewed
Page 1 of 25 | 1000 Results
Graphene Flagship study predicts increased market penetration by 2025
Graphene Flagship experts identify key opportunities in graphene commercialisation after a comprehensive three-year analysis of production methods and potential applications. (2021-01-25)

Charged up: revolutionizing rechargeable sodium-ion batteries with 'doped' carbon anodes
Rechargeable batteries like lithium-ion batteries (LIBs) are seeing a surge in demand as technologies like electric propulsion ships and other vehicles become increasingly popular. However, lithium is costly, which has driven the search for other options. Sodium-ion batteries (SIBs) are a more sustainable alternative but are thermodynamically unstable with graphite--the usual anode material. Now, researchers in Korea have developed a ''heteroatom-doped'' (modified) carbon-based anode that helps SIBs to surpass the performance of LIBs. (2021-01-25)

Keeping a clean path: Doubling the capacity of solid-state lithium batteries
Scientists at Tokyo Institute of Technology, Tohoku University, National Institute of Advanced Industrial Science and Technology, and Nippon Institute of Technology, demonstrated by experiment that a clean electrolyte/electrode interface is key to realizing high-capacity solid-state lithium batteries. Their findings could pave the way for improved battery designs with increased capacity, stability, and safety for both mobile devices and electric vehicles. (2021-01-25)

Highly efficient grid-scale electricity storage at fifth of cost
Researchers in WMG at the University of Warwick, in collaboration with Imperial College London, have found a way to enhance hybrid flow batteries and their commercial use. The new approach can store electricity in these batteries for very long durations for about a fifth the price of current technologies, with minimal location restraints and zero emissions. (2021-01-22)

Taking sieving lessons from nature
Nanostructure-templated electrochemical polymerization enhances speed and selectivity in organic membrane-based processes. (2021-01-21)

Electron transfer discovery is a step toward viable grid-scale batteries
The way to boost electron transfer in grid-scale batteries is different than researchers had believed, a new study from the University of Michigan has shown. (2021-01-21)

An anode-free zinc battery that could someday store renewable energy
Renewable energy sources, such as wind and solar power, could help decrease the world's reliance on fossil fuels. But first, power companies need a safe, cost-effective way to store the energy for later use. Massive lithium-ion batteries can do the job, but they suffer from safety issues and limited lithium availability. Now, researchers reporting in ACS' Nano Letters have made a prototype of an anode-free, zinc-based battery that uses low-cost, naturally abundant materials. (2021-01-20)

New sodium oxide paves the way for advanced sodium-ion batteries
Skoltech researchers and their collaborators from France, the US, Switzerland, and Australia were able to create and describe a mixed oxide Na(Li1/3Mn2/3)O2 that holds promise as a cathode material for sodium-ion batteries, which can take one day complement or even replace lithium-ion batteries. (2021-01-20)

How short circuits in lithium metal batteries can be prevented
There are high hopes for the next generation of high energy-density lithium metal batteries, but before they can be used in our vehicles, there are crucial problems to solve. An international research team led by Chalmers University of Technology, Sweden, has now developed concrete guidelines for how the batteries should be charged and operated, maximising efficiency while minimising the risk of short circuits. (2021-01-19)

Russian chemists developed polymer cathodes for ultrafast batteries
Russian researchers have synthesized and tested new polymer-based cathode materials for lithium dual-ion batteries. The tests showed that the new cathodes withstand up to 25,000 operating cycles and charge in a matter of seconds, thus outperforming lithium-ion batteries. The cathodes can also be used to produce less expensive potassium dual-ion batteries. (2021-01-19)

Inexpensive battery charges rapidly for electric vehicles, reduces range anxiety
Range anxiety, the fear of running out of power before being able to recharge an electric vehicle, may be a thing of the past, according to a team of Penn State engineers who are looking at lithium iron phosphate batteries that have a range of 250 miles with the ability to charge in 10 minutes. (2021-01-18)

Healing ceramic electrolyte degraded by Li dendrite
Our research team has investigated the effect of post-annealing for healing Li garnet solid electrolyte degraded by the growth of Li dendrites. The ionic conductivity of the annealed solid electrolyte was slightly lower than that of the electrolyte before annealing but was retained above 10?4 S cm?1 at room temperature. The electrochemical results obtained indicate the possibility of reusing the solid electrolyte degraded by the growth of Li dendrites in another all-solid-state Li battery. (2021-01-18)

SolarEV City concept: Building the next urban power and mobility systems
Cities are responsible for 60-70% of energy-related CO2 emissions. As the world is increasingly urbanized, it is crucial to identify cost-effective pathways to decarbonize. Here, we propose a ''SolarEV City'' concept, in which integrated systems of cities' roof-top PVs with EVs as batteries can supply affordable and dispatchable CO2-free electricity for citie's dwerllers, which can reduce CO2 emission by 54-95% with 26-41% of potential cost savings by 2030. (2021-01-14)

A scanning transmission X-ray microscope for analysis of chemical states of lithium
A new method to analyze chemical status of lithium was developed by using a synchrotron-based scanning transmission soft X-ray microscope (STXM). A key of the method is installation of a newly designed X-ray lens, a low-pass filtering zone plate, to the STXM to improve quality of a monochromatic X-ray. 2-dimensional chemical state of a test electrode of Li-ion battery was successfully analyzed with spatial resolution of 72 nm. (2021-01-14)

Lead poisoning of children
A remediation and public education effort at an abandoned battery recycling facility in Bangladesh eliminated most lead soil contamination, but levels of the toxic metal in children living near the site did not decrease nearly as much. The discrepancy reveals the scope of other lead exposure sources and the challenge they present to public health. (2021-01-14)

iCeMS makes highly conductive antiperovskites with soft anion lattices
A new structural arrangement of atoms shows promise for developing safer batteries made with solid materials. Scientists at Kyoto University's Institute for Integrated Cell-Material Sciences (iCeMS) designed a new type of 'antiperovskite' that could help efforts to replace the flammable organic electrolytes currently used in lithium ion batteries. Their findings were described in the journal Nature Communications. (2021-01-12)

Can sodium-ion batteries replace trusty lithium-ion ones?
Sodium-ion batteries are a potential replacement for lithium batteries, but different anodes are needed for the same level of performance. Amorphous carbon is known to be a useful anode, because it has defects and voids that can be used to store sodium ions. Nitrogen/phosphorus-doped carbon also offers appealing electrical properties. In Applied Physics Reviews, researchers describe how they applied basic physical concepts of atomic scale to build high-performance anodes for sodium-ion batteries. (2021-01-12)

New nanostructured alloy for anode is a big step toward revolutionizing energy storage
Researchers have developed a battery anode based on a new nanostructured alloy that could revolutionize the way energy storage devices are designed and manufactured. (2021-01-11)

Core design strategy for fire-resistant batteries
The Korea Institute of Science and Technology(KIST) is proud to announce that the research team of Dr. Sang-baek Park at the Center for Energy Materials Research, in collaboration with the research team of Professor Hyun-jung Shin of Sungkyunkwan University, has developed a breakthrough material design strategy that can overcome the problem of high interfacial resistance between the solid electrolyte and the cathode, which is an obstacle to the commercialization of all-solid-state batteries. (2021-01-11)

A safer, less expensive and fast charging aqueous battery
Researchers have developed a new battery anode that overcomes the limitations of lithium-ion batteries and offers a stable, high-performance battery using seawater as the electrolyte. (2021-01-11)

Construction of carbon-based cell-like-spheres for robust potassium anode
Inspired by the structure of a biological cell, biomimetic carbon cells (BCCs) were synthesized and used as potassium ion batteries (PIBs) anodes. The unique structural characteristics of the BCCs resulted in PIBs that showed a high reversible capacity, excellent cycle stability and rate performance. The present strategy provides a new way for the design and manufacture of new biomimetic battery materials in the future, and promotes collaborative research across multiple disciplines. (2021-01-09)

How 'Iron Man' bacteria could help protect the environment
In a new study, researchers show that microbes are capable of an incredible feat that could help reclaim a valuable natural resource and soak up toxic pollutants. (2021-01-08)

Supercapacitors challenge batteries
A team working with Roland Fischer, Professor of Inorganic and Metal-Organic Chemistry at the Technical University Munich (TUM) has developed a highly efficient supercapacitor. The basis of the energy storage device is a novel, powerful and also sustainable graphene hybrid material that has comparable performance data to currently utilized batteries. (2021-01-04)

New class of cobalt-free cathodes could enhance energy density of next-gen lithium-ion batteries
Oak Ridge National Laboratory researchers have developed a new family of cathodes with the potential to replace the costly cobalt-based cathodes typically found in today's lithium-ion batteries that power electric vehicles and consumer electronics. (2020-12-18)

High-rate Li-ion batteries demonstrate superior safety
In the paper, 'Determining the Limits and Effects of High-Rate Cycling on Lithium Iron Phosphate Cylindrical Cells' published in and on the cover of the Journal Batteries, researchers from WMG, University of Warwick investigated the impacts on battery cell ageing from high current operation using commercial cells. (2020-12-14)

New hard-carbon anode material for sodium-ion batteries will solve the lithium conundrum
Today, most rechargeable batteries are lithium-ion batteries, which are made from relatively scarce elements--this calls for the development of batteries using alternative materials. In a new study, scientists from Tokyo University of Science, Japan, find an energy-efficient method to fabricate a hard carbon electrode with enormously high sodium storage capacity. This could pave the way for next-generation sodium-ion batteries made with inexpensive and abundant materials, and having a higher energy density than lithium-ion batteries. (2020-12-14)

Novel cathode design significantly improves performance of next-generation battery
A research team at HKUST has proposed a novel cathode design concept for lithium-sulfur (Li-S) battery that substantially improves the performance of this kind of promising next-generation battery. (2020-12-11)

Single-crystal technology holds promise for next-generation lithium-ion batteries
Scientists have improved a promising battery technology, creating a single-crystal, nickel-rich cathode that is hardier and more efficient than before. It's one step toward improved lithium-ion batteries that are common in electric vehicles today. Increasing nickel content in the cathode is on the drawing board of lithium-ion battery makers largely because of its relatively low cost, wide availability and low toxicity compared to other key battery materials, such as cobalt. (2020-12-10)

Batteries mimic mammal bones for stability
Sodium-ion batteries offer several advantages over lithium-ion batteries; however, it is difficult to develop sodium cathodes, materials through which electrons can enter a battery. Many candidate materials are unstable or cannot withstand high voltages. To find a solution, researchers turned to nature. They created a porous system of NVP structures, surrounded by a dense shell of reduced graphene oxide. They describe the mammal bone-inspired sodium cathode in the journal Applied Physics Reviews. (2020-12-08)

Stretchable micro-supercapacitors to self-power wearable devices
A stretchable system that can harvest energy from human breathing and motion for use in wearable health-monitoring devices may be possible, according to an international team of researchers, led by Huanyu ''Larry'' Cheng, Dorothy Quiggle Career Development Professor in Penn State's Department of Engineering Science and Mechanics. (2020-12-08)

This flexible and rechargeable battery is 10 times more powerful than state of the art
A team of researchers has developed a flexible, rechargeable silver oxide-zinc battery with a five to 10 times greater areal energy density than state of the art. The battery also is easier to manufacture; while most flexible batteries need to be manufactured in sterile conditions, under vacuum, this one can be screen printed in normal lab conditions. The device can be used in flexible, stretchable electronics for wearables as well as soft robotics. (2020-12-07)

Thermal stability analysis technique for EV batteries to detect risk of fire or explosion
Recently, there have been a number of electric vehicle (EV) battery fire incidents. Unlike the batteries used in small mobile devices, such as smartphones, the battery pack of an EV is composed of hundreds of battery cells, and any instability can cause major casualties and property damage. Amid various efforts to pinpoint the cause of battery fires, Korean researchers have developed a new analysis method to evaluate the thermal stability of EV batteries. (2020-12-04)

Battery of tests: Scientists figure out how to track what happens inside batteries
The new method could be the key to designing more efficient batteries for specific uses, like electric cars and airplanes. (2020-12-03)

ETRI, DGIST develop new electrode structure for all-solid-state secondary battery
South Korean researchers have developed a new type of electrode structure for all-solid-state secondary batteries. If this technology is adopted, the energy density of the batteries could increase significantly when compared to existing technologies, contributing tremendously to the development of high-performance secondary batteries. (2020-12-02)

Discoveries highlight new possibilities for magnesium batteries
Researchers from the University of Houston and the Toyota Research Institute of North America have reported a breakthrough in the development of magnesium batteries, allowing them to operate at room temperature and deliver a power density comparable to that of lithium-ion batteries. (2020-11-30)

Accurate and efficient 3D motion tracking using deep learning
A new sensing method has made tracking movement easier and more efficient. A research group from Tohoku University has captured dexterous 3D motion data from a flexible magnetic flux sensor array, using deep learning and a structure-aware temporal bilateral filter. (2020-11-27)

Creating higher energy density lithium-ion batteries for renewable energy applications
Lithium-ion batteries that function as high-performance power sources for renewable applications, such as electric vehicles and consumer electronics, require electrodes that deliver high energy density without compromising cell lifetimes. In the Journal of Vacuum Science and Technology A, researchers investigate the origins of degradation in high energy density LIB cathode materials and develop strategies for mitigating those degradation mechanisms and improving LIB performance. (2020-11-24)

Staying ahead of the curve with 3D curved graphene
A team of researchers has amplified 3D graphene's electrical properties by controlling its curvature. (2020-11-20)

The ultimate conditions to get the most out of high-nickel batteries
It is common knowledge in battery manufacturing that many cathode materials are moisture sensitive. However, as the popularity of high nickel-based battery components increases, researchers from WMG, University of Warwick have found that the drier the conditions that these cathodes are stored and processed in, then significant improvement in performance of the battery is gained. (2020-11-18)

New technique seamlessly converts ammonia to green hydrogen
Northwestern University researchers have developed a highly effective, environmentally friendly method for converting ammonia into hydrogen. The new technique is a major step forward for enabling a zero-pollution, hydrogen-fueled economy. The idea of using ammonia as a carrier for hydrogen delivery has gained traction in recent years because ammonia is much easier to liquify than hydrogen and is therefore much easier to store and transport. Northwestern's technological breakthrough overcomes several existing barriers to the production of clean hydrogen from ammonia. (2020-11-18)

Page 1 of 25 | 1000 Results
   First   Previous   Next      Last is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to