Current Catalysts News and Events

Current Catalysts News and Events, Catalysts News Articles.
Sort By: Most Relevant | Most Viewed
Page 1 of 25 | 1000 Results
Biopolymer-coated nanocatalyst can help realize a hydrogen fuel-driven future
While popular as an eco-friendly fuel, hydrogen is difficult to produce efficiently in an eco-friendly manner (through sunlight-induced decomposition of water) due to stability issues of catalysts (chemical reaction facilitators). In a new study, scientists demonstrate water splitting under sunlight using polydopamine-coated zinc sulfide nanorods as a catalyst. In their paper, they report a remarkably enhanced hydrogen production rate and look into the causes, paving the way for a hydrogen-based future. (2021-02-23)

Amination strategy improves efficiency of CO2 electrocatalytic reduction
A research team led by Prof. LIU Licheng from the Qingdao Institute of Bioenergy and Bioprocess Technology (QIBEBT) of the Chinese Academy of Sciences (CAS) proposed a two-step amination strategy to regulate the electronic structure of M-N/C catalysts (M=Ni, Fe, Zn) and enhance the intrinsic activity of CO2 electrocatalytic reduction. (2021-02-19)

Ceramic fuel cells: Reduced nickel content leads to improved stability and performance?
A research team in Korea has developed a ceramic fuel cell that offers both stability and high performance while reducing the required amount of catalyst by a factor of 20. The application range for ceramic fuel cells, which have so far only been used for large-scale power generation due to the difficulties associated with frequent start-ups, can be expected to expand to new fields, such as electric vehicles, robots, and drones. (2021-02-17)

Scientists able to see how potential cancer treatment reacts in single cell
Using a 185 metre beamline at the Diamond synchrotron, researchers could see how Osmium, a rare precious metal that could be used for cancer treatments, reacts in a single human lung cancer cell. This is a major step forward in discovering new anti-cancer drugs for researchers at the University of Warwick. (2021-02-17)

Quickly identify high-performance multi-element catalysts
Catalysts consisting of at least five chemical elements could be the key to overcoming previous limitations in the production of green hydrogen, fuel cells, batteries or CO2 reduction. However, finding the optimal composition of these multi-element catalysts is like looking for a needle in a haystack: testing thousands to millions of possible combinations cannot be realized. (2021-02-17)

Modeling a better catalyst for PIBSAs
Polyisobutenyl succinic anhydrides (PIBSAs) are important for the auto industry because of their wide use in lubricant and fuel formulations. New research led by the Computer-Aided Nano and Energy Lab (CANELa) at the University of Pittsburgh, in collaboration with the Lubrizol Corporation, builds a deeper understanding of the catalyst used to synthesize PIBSAs. (2021-02-17)

Hydrogen peroxide, universal oxidizing agent, high-efficiency production by simple process
The Korea Institute of Science and Technology(KIST) announced that a joint research team developed a platinum-gold alloy catalyst for hydrogen peroxide production based on a computer simulation. Hydrogen peroxide selectivity can be increased to 95% by using this catalyst, compared with only 30-40% for a palladium catalyst, which indicates that mostly hydrogen peroxide on the developed Pt-Au catalyst can be produced with a small amount of water. (2021-02-16)

Researchers measure temperature effect of plasmon in chemical reactions using organic "sensors"
The researchers of TPU together with their colleagues from Russian and foreign scientific centers have found a way to estimate the temperature of a chemical reaction activated by pseudo-particles - plasmons. Two organic molecules served as ultra-small sensors or thermometers. (2021-02-15)

Flowers of St. John's Wort serve as green catalyst
An interdisciplinary team of scientists from the School of Science at TU Dresden has for the first time used dried flowers of St. John's Wort (genus Hypericum) as an active catalyst in various photochemical reactions. This conceptually new and sustainable process was registered as a German patent and presented in the journal 'Green Chemistry'. (2021-02-12)

Industrial compound gets eco-friendly reaction
Nagoya University scientists have developed a chemical reaction that produces high yields of a compound used in a wide variety of industries, without needing high temperatures or toxic catalysts. The approach offers a practical and sustainable solution for industrial (meth)acrylate (= acrylate or methacrylate) ester synthesis. (2021-02-10)

Study reveals platinum's role in clean fuel conversion
Scientists at the US Department of Energy's Brookhaven National Laboratory, Stony Brook University (SBU), and other collaborating institutions have uncovered dynamic, atomic-level details of how an important platinum-based catalyst works in the water gas shift reaction. The experiments provide definitive evidence that only certain platinum atoms play an important role in the chemical conversion, and could therefore guide the design of catalysts that use less of this precious metal. (2021-02-10)

New method for asymmetric N,N-acetal synthesis promises advances in drug development
Chiral N,N-acetals are an important component of several bioactive drugs and medicines. Owing to this, chemical reactions that lead to high-purity yield of the desired 'enantiomeric' form are highly sought after. In a new study, scientists from Japan demonstrate high selectivity formation of N,N-acetals from reactions between 2-aminobenzamide and various diketones in presence of bis(imidazoline)-phosphoric acid catalyst and look into the possible mechanism, opening doors to facile synthesis of novel pharmaceutical drugs. (2021-02-09)

Nickel phosphide nanoparticle catalyst is the full package
Osaka University researchers prepared a nickel phosphide nanoparticle catalyst on a hydrotalcite support (nano-Ni2P/HT) that showed high activity and selectivity in the hydrogenation of D-glucose to D-sorbitol. The catalyst was air-stable, reusable, and effective in water and at 25┬░C or 1 bar hydrogen gas pressure. Its mild operating conditions will contribute to the low-cost, green, and sustainable production of D-sorbitol for food, cosmetics, and pharmaceutical industries. (2021-02-04)

Polymer-derived carbon as metal-free, "green" alternative to catalysts and nano carbons
Darmstadt, February 4, 2021. The research group of Professor Bastian Etzold at the Department of Chemistry at TU Darmstadt has succeeded in synthesizing macroscopic carbons that are similar in handling to common technical catalysts. The research team has now published its results in the renowned journal Angewandte Chemie and demonstrated that these carbons can achieve the high catalytic activity and selectivity that otherwise only nanocarbons can. (2021-02-04)

Thanks to machine learning, the future of catalyst research is now!
To date, research in the field of combinatorial catalysts has relied on serendipitous discoveries of catalyst combinations. Now, scientists from Japan have streamlined a protocol that combines random sampling, high-throughput experimentation, and data science to identify synergistic combinations of catalysts. With this breakthrough, the researchers hope to remove the limits placed on research by relying on chance discoveries and have their new protocol used more often in catalyst informatics. (2021-02-03)

Non-metallic electronic regulation in CuCo oxy-/thio-spinel as OER electrocatalysts
Researchers successfully prepared oxy-spinel of Cu1-xCo2+xO4 nanaoflakes and thio-spinel of Cu1-xCo2+xS4 nanospheres by a facile hydrothermal method. The resulting Cu1-xCo2+xO4 exhibits higher catalytic performances toward OER in alkaline media than Cu1-xCo2+xS4 for water oxidation. Experimentally and theoretically, the superior OER catalytic activity of Cu1-xCo2+xO4 nanoflakes mainly depends on the strongly-electronegativity of oxygen element in spinel structure, which determines the higher valence state of Co active sites in CuCo oxyspinel. (2021-02-01)

New catalyst moves seawater desalination, hydrogen production closer to commercialization
Seawater is abundant and cheap, making it a tempting resource to meet the world's growing need for clean drinking water and carbon-free energy. Now researchers from the University of Houston have reported a new catalyst that can be made quickly and inexpensively, bringing the technology closer to commercial reality. (2021-01-28)

Tungsten-substituted vanadium oxide breathes fresh air into catalyst technology
Tokyo, Japan - Researchers from Tokyo Metropolitan University have created a new tungsten-substituted vanadium oxide catalyst for breaking down harmful nitrogen oxides in industrial exhaust. Their new catalyst material works at lower temperatures and does not suffer major drops in performance when processing ''wet'' exhaust, resolving a major drawback in conventional vanadium oxide catalysts. They found that the unaggregated dispersal of atomic tungsten in the original crystal structure plays a key role in how it functions. (2021-01-26)

Photocatalytic reaction in the shadow
Photoelectrochemical water splitting is a promising technology to convert solar energy into value-added fuels. Theoretically, silicon-based metal-insulator-semiconductor (MIS) photocathode can achieve high efficiency. However, the parasitic light absorption caused by catalysts and metals, as well as the lack of metals to form a large band-offset with p-Si, severely limit their performances. Scientists based in China have demonstrated an illumination-reaction decoupled MIS photocathode using n-Si to prevent the parasitic light absorption while establishing a large band-offset. (2021-01-25)

Single atoms as a catalyst: Surprising effects ensue
Catalysts are getting smaller - ''single-atom'' catalysts are the logical end point of this downsizing. However, individual atoms can no longer be described using the rules developed from larger pieces of metal, so the rules used to predict which metals will be good catalysts must be revamped - this has now been achieved at TU Wien. As it turns out, single atom catalysts based on much cheaper materials might be even more effective. (2021-01-22)

Researchers make domestic high-performance bipolar membranes possible
A team led by Prof. XU Tongwen and Prof WU Liang from the University of Science and Technology of China (USTC) of the Chinese Academy of Sciences (CAS) adopted an in-situ growth idea to construct a stable and efficient membrane (2021-01-21)

Controlling chemical catalysts with sculpted light
Using state-of-the-art fabrication and imaging, researchers watched the consequences of adding sculpted light to a catalyst during a chemical transformation. This work could inform more efficient -- and potentially new -- forms of catalysis. (2021-01-15)

Giving the hydrogen economy an acid test
Tsukuba University scientists show that the effectiveness of hydrogen-producing metal catalysts protected by graphene depends on the ability of protons to penetrate into the inner metallic surface. This work may lead to widely available hydrogen-powered cars. (2021-01-14)

Catalyticity of molybdenum-dinitrogen complexes in organic reactions
Molybdenum dinitrogen complexes supported by monodentate arylsilylamido ligand, [Ar(Me3Si)N]3MoN2Mg(THF)2[N(SiMe3)Ar] and [Ar(Me3Si)N]3MoN2SiMe3 (Ar = 3,5-Me2C6H3) were synthesized and structurally characterized, which were proved to be effective catalysts for the disproportionation of cyclohexadienes and isomerization of terminal alkenes. 1H NMR spectrum suggested that the bridging nitrogen ligand remains intact during the catalytic reaction, indicating the possible catalytic ability of Mo-N=N motif. (2021-01-14)

Catalysts: worth taking a closer look
Metal surfaces play a role as catalysts for many important applications - from fuel cells to the purification of car exhaust gases. However, their behaviour is decisively affected by oxygen atoms incorporated into the surface. This phenomenon has been known for a long time, but until now it has been impossible to precisely investigate the role of oxygen in complex surfaces point by point in order to understand the chemical background at the atomic level. (2021-01-13)

Making hydrogen energy with the common nickel
POSTECH joint research team develops a nickel-based catalyst system doped with oxophilic transition metal elements. (2021-01-12)

Sustainable transportation: clearing the air on nitrogen doping
Researchers from the University of Tsukuba elucidated the initial reaction pathways on the pyridinic nitrogen atoms at the armchair edges of doped carbon catalysts for the oxygen reduction reaction in proton-exchange membrane fuel cells. This will help optimize a low-carbon technology for future transportation needs. (2021-01-12)

USTC obtains Pd-Pt tesseracts for oxygen reduction reaction
A team led by Prof. ZENG Jie from Hefei National Laboratory for Physical Sciences at the Microscale and Prof. BAO Jun from National Synchrotron Radiation Laboratory of University of Science and Technology of China of the Chinese Academy of Sciences made breakthrough in the controlled synthesis of Pd-Pt tesseracts for ORR and the mechanism investigation of their etching process. (2021-01-12)

Study shows tweaking one layer of atoms on a catalyst's surface can make it work better
When an LNO catalyst with a nickel-rich surface carries out a water-splitting reaction, its surface atoms rearrange from a cubic to a hexagonal pattern and its efficiency doubles. Deliberately engineering the surface to take advantage of this phenomenon offers a way to design better catalysts. (2021-01-11)

Catalyst transforms plastic waste to valuable ingredients at low temperature
For the first time, researchers have used a novel catalyst process to recycle a type of plastic found in everything from grocery bags and food packaging to toys and electronics into liquid fuels and wax. (2021-01-05)

Better together: Scientists discover applications of nanoparticles with multiple elements
As catalysts for fuel cells, batteries and processes for carbon dioxide reduction, alloy nanoparticles that are made up of five or more elements are shown to be more stable and durable than single-element nanoparticles. (2021-01-04)

Speeding toward improved hydrogen fuel production
A new material developed by a team led by Berkeley Lab will help to make hydrogen a viable energy source for a wide range of applications. (2020-12-21)

New catalytic approach to accessing key intermediate carbocation
This study revealed the development of a novel iridium based catalyst. The catalyst is capable of accessing the carbocation intermediates of the reaction to achieve an unprecedented level of regioselectivity (>95%) and enantioselectivity (98%). This technology will have far-reaching implications in synthetic, organic, and pharmaceutical chemistry. (2020-12-21)

Shifting gears toward chemical machines
Researchers at the University of Pittsburgh Swanson School of Engineering have utilized a catalytic reaction that causes a two-dimensional, chemically-coated sheet to spontaneously ''morph'' into a three-dimensional gear that performs sustained work. (2020-12-18)

Three-dimensional view of catalysts in action
For understanding the structure and function of catalysts in action, researchers of Karlsruhe Institute of Technology (KIT), in cooperation with colleagues from the Swiss Light Source SLS of Paul Scherrer Institute (PSI) in Switzerland and the European Synchrotron Radiation Facility (ESRF) in France, have developed a new diagnostic tool. Operando X-ray spec-troscopy visualizes the structure and gradients of complex technical catalysts in three dimensions, thus allowing us to look into functioning chemical reactors. (2020-12-17)

Catalyst research: molecular probes require highly precise calculations
Catalysts are indispensable for many technologies. To further improve heterogeneous catalysts, it is required to analyze the complex processes on their surfaces, where the active sites are located. Scientists of Karlsruhe Institute of Technology (KIT), together with colleagues from Spain and Argentina, have now reached decisive progress: As reported in Physical Review Letters, they use calculation methods with so-called hybrid functionals for the reliable interpretation of experimental data. (DOI: 10.1103/PhysRevLett.125.256101). (2020-12-17)

Catalytic activity of individual cobalt oxide nanoparticles determined
Precious metal-free nanoparticles could serve as powerful catalysts in the future, for example for hydrogen production. To optimize them, researchers must be able to analyze the properties of individual particles. A new method for this has been suggested by a team from Ruhr-Universit├Ąt Bochum and from the University of Duisburg-Essen. The group developed a method using a robotic arm that allows them to select individual particles under an electron microscope and place them on a nanoelectrode for electrochemical analysis. (2020-12-15)

Chemists from RUDN University used crab shells to improve palladium catalysts
?hemists from RUDN University synthesized soluble biopolymers based on chitin from crab shells. Together with palladium, they form effective catalysts for organic reactions, and their nanoparticles can be re-used over ten times. (2020-12-14)

A molecule like a nanobattery
How do molecular catalysts function, and what effects do they have? A team of chemical scientists at the University of Oldenburg has come closer to the answers using a model molecule that functions like a molecular nanobattery. It consists of several titanium centres linked to each other by a single layer of interconnected carbon and nitrogen atoms. The researchers' recently published findings combine the results of three multi-year PhD research projects. (2020-12-08)

Unlocking the secrets of chemical bonding with machine learning
In a report published in Nature Communications, Hongliang Xin, associate professor of chemical engineering at Virginia Tech, and his team of researchers developed a Bayesian learning model of chemisorption, or Bayeschem for short, aiming to use artificial intelligence to unlock the nature of chemical bonding at catalyst surfaces. (2020-12-04)

Page 1 of 25 | 1000 Results
   First   Previous   Next      Last   
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.