Current Catalytic Activity News and Events

Current Catalytic Activity News and Events, Catalytic Activity News Articles.
Sort By: Most Relevant | Most Viewed
Page 1 of 25 | 1000 Results
Synthesis of a rare metal complex of nitrous oxide opens new vistas for
Like its chemical relative carbon dioxide (CO2), nitrous oxide (N2O) is an important greenhouse gas and the dominant ozone-depleting substance. Strategies for limiting its emissions and its catalytic decomposition with metals are being developed. A study indicates that nitrous oxide can bind to metals similarly to carbon dioxide, which helps to design new complexes with even stronger bonding. This could allow the use of nitrous oxide in synthetic chemistry. (2021-02-22)

Distorting memories helps the brain remember
In order to remember similar events, the brain exaggerates the difference between them. This results in divergent brain activity patterns but better memory performance, according to new research published in JNeurosci. (2021-02-22)

Quickly identify high-performance multi-element catalysts
Catalysts consisting of at least five chemical elements could be the key to overcoming previous limitations in the production of green hydrogen, fuel cells, batteries or CO2 reduction. However, finding the optimal composition of these multi-element catalysts is like looking for a needle in a haystack: testing thousands to millions of possible combinations cannot be realized. (2021-02-17)

Modeling a better catalyst for PIBSAs
Polyisobutenyl succinic anhydrides (PIBSAs) are important for the auto industry because of their wide use in lubricant and fuel formulations. New research led by the Computer-Aided Nano and Energy Lab (CANELa) at the University of Pittsburgh, in collaboration with the Lubrizol Corporation, builds a deeper understanding of the catalyst used to synthesize PIBSAs. (2021-02-17)

Hydrogen peroxide, universal oxidizing agent, high-efficiency production by simple process
The Korea Institute of Science and Technology(KIST) announced that a joint research team developed a platinum-gold alloy catalyst for hydrogen peroxide production based on a computer simulation. Hydrogen peroxide selectivity can be increased to 95% by using this catalyst, compared with only 30-40% for a palladium catalyst, which indicates that mostly hydrogen peroxide on the developed Pt-Au catalyst can be produced with a small amount of water. (2021-02-16)

Breakthrough in organic chemistry: Asymmetric syntheses of useful, unique chiral compounds
''N?C axially chiral compounds'' are important chiral molecules with various applications in medicinal chemistry and chiral technology. However, there is a scarcity of research on ways to synthesize them in an enantioselective (asymmetric) manner, to obtain useful forms of the compounds. Researchers at Shibaura Institute of Technology, Japan, have rectified this, by developing a catalytic enantioselective method to synthesize various N?C axially chiral compounds. A recent article in Accounts of Chemical Research summarizes their achievements. (2021-02-16)

The water surface is a fantastic place for chemical reactions
Using an advanced technique, scientists from the RIKEN Cluster for Pioneering Research have demonstrated that a chemical reaction powered by light takes place ten thousand times faster at the air-water interface--what we usually call the water surface--than in the bulk of the water, even when the light has equivalent energy. This finding could help our understanding of the many important chemical and biological processes that take place at the water surface. (2021-02-15)

Producing more sustainable hydrogen with composite polymer dots
Hydrogen for energy use can be extracted in an environmentally friendly way from water and sunlight, using photocatalytic composite polymer nanoparticles developed by researchers at Uppsala University. In laboratory tests, these 'polymer dots' showed promising performance and stability alike. The study has been published in the Journal of the American Chemical Society. (2021-02-12)

Common pipistrelle bats attracted to wind turbines
One of the most abundant bats in Europe may be attracted to wind turbines, a new study shows. (2021-02-11)

Study reveals platinum's role in clean fuel conversion
Scientists at the US Department of Energy's Brookhaven National Laboratory, Stony Brook University (SBU), and other collaborating institutions have uncovered dynamic, atomic-level details of how an important platinum-based catalyst works in the water gas shift reaction. The experiments provide definitive evidence that only certain platinum atoms play an important role in the chemical conversion, and could therefore guide the design of catalysts that use less of this precious metal. (2021-02-10)

'Defective' carbon simplifies hydrogen peroxide production
Rice University scientists introduce a new catalyst to reduce oxygen to widely used hydrogen peroxide. The process sidesteps complex and expensive processes that generate toxic organic byproducts and large amounts of wastewater. (2021-02-09)

Understanding catalytic couplings: not all synergies are simple
Negishi cross-coupling reactions have been widely used to form C-C bonds since the 1970s and are often perceived as the result of two metals (i.e zinc and palladium/nickel) working in synergy. Researchers from the Martin group at ICIQ have delved into the Negishi cross-coupling of aryl esters using nickel catalysis to understand how this reaction works at the molecular level and how to improve it. The results have been published in Nature Catalysis. (2021-02-08)

At the core of the Integrator complex
A new paper from the Galej group at EMBL Grenoble describes the structure of key parts of the Integrator complex. This complex, which is composed of multiple protein subunits, is involved in global regulation of the process of transcription, during which the cell's DNA is used as a template to make instructions in the form of RNA. Knowing the structure of the Integrator complex will help scientists to better understand the interactions between its subunits and how it is involved in gene expression. (2021-02-05)

Nickel phosphide nanoparticle catalyst is the full package
Osaka University researchers prepared a nickel phosphide nanoparticle catalyst on a hydrotalcite support (nano-Ni2P/HT) that showed high activity and selectivity in the hydrogenation of D-glucose to D-sorbitol. The catalyst was air-stable, reusable, and effective in water and at 25°C or 1 bar hydrogen gas pressure. Its mild operating conditions will contribute to the low-cost, green, and sustainable production of D-sorbitol for food, cosmetics, and pharmaceutical industries. (2021-02-04)

Polymer-derived carbon as metal-free, "green" alternative to catalysts and nano carbons
Darmstadt, February 4, 2021. The research group of Professor Bastian Etzold at the Department of Chemistry at TU Darmstadt has succeeded in synthesizing macroscopic carbons that are similar in handling to common technical catalysts. The research team has now published its results in the renowned journal Angewandte Chemie and demonstrated that these carbons can achieve the high catalytic activity and selectivity that otherwise only nanocarbons can. (2021-02-04)

Mysterious organic scum boosts chemical reaction efficiency, may reduce chemical waste
Chemical manufacturers frequently use toxic solvents such as alcohols and benzene to make products like pharmaceuticals and plastics. Researchers are examining a previously overlooked and misunderstood phenomenon in the chemical reactions used to make these products. This discovery brings a new fundamental understanding of catalytic chemistry and a steppingstone to practical applications that could someday make chemical manufacturing less wasteful and more environmentally sound. (2021-02-04)

Comb-like etching regulated growth for large-area graphene nanoribbon arrays
The low on/off current ratio in intrinsic graphene-based field-effect transistor has inspired the development of bandgap engineering, which contain tailoring graphene into narrow ribbons, doping graphene with heteroatom, and applying stress or vertical electric field. Graphene nanoribbons, which introduce a bandgap by confining charge carriers in lateral dimension, are a lead candidate for switching devices. Scientists in China developed an in-situ growth of graphene nanoribbon arrays on liquid metal without assistance of template. (2021-02-04)

Blink! The link between aerobic fitness and cognition
Researchers from the University of Tsukuba have found evidence that spontaneous eye blink activity, which reflects activity in the dopaminergic system, explains the connection between fitness and cognitive function. This is the first study to indicate that dopamine has an essential role in linking aerobic fitness and cognition. These findings open the door to new research regarding the mechanisms by which exercise improves brain function, and may lead to novel fitness strategies for enhancing cognition. (2021-02-03)

Hydrogen-producing enzyme protects itself against oxygen
Hydrogen-producing enzymes are beacons of hope in biohydrogen research. However, they are so vulnerable to oxygen in the air that it has not been possible to exploit their potential on a larger scale. The recently discovered [FeFe]-hydrogenase CbA5H from the bacterium Clostridium beijerinckii resists the oxygen attack. (2021-02-02)

Oncotarget: The pro-apoptotic actions of 2-methoxyestradiol against ovarian cancer
The objective of this Oncotarget study was to elucidate the molecular mechanism of actions of 2MeOE2, a known microtubule disrupting agent, in inducing apoptosis in ovarian tumors (2021-02-01)

Youth with autism see sharp decline in physical activity between ages 9-13
A recent study from Oregon State University has found that to best help kids with autism maintain healthy rates of physical activity, interventions should be targeted during the ages of 9 to 13, as that's when kids show the biggest drop in active time. (2021-02-01)

Non-metallic electronic regulation in CuCo oxy-/thio-spinel as OER electrocatalysts
Researchers successfully prepared oxy-spinel of Cu1-xCo2+xO4 nanaoflakes and thio-spinel of Cu1-xCo2+xS4 nanospheres by a facile hydrothermal method. The resulting Cu1-xCo2+xO4 exhibits higher catalytic performances toward OER in alkaline media than Cu1-xCo2+xS4 for water oxidation. Experimentally and theoretically, the superior OER catalytic activity of Cu1-xCo2+xO4 nanoflakes mainly depends on the strongly-electronegativity of oxygen element in spinel structure, which determines the higher valence state of Co active sites in CuCo oxyspinel. (2021-02-01)

Researchers reveal in-situ manipulation of active Au-TiO2 interface
An international joint research team from the Shanghai Advanced Research Institute of the Chinese Academy of Sciences, along with Zhejiang University and the Technical University of Denmark, reported an in-situ strategy to manipulate interfacial structure with atomic precision during catalytic reactions. (2021-01-28)

Tungsten-substituted vanadium oxide breathes fresh air into catalyst technology
Tokyo, Japan - Researchers from Tokyo Metropolitan University have created a new tungsten-substituted vanadium oxide catalyst for breaking down harmful nitrogen oxides in industrial exhaust. Their new catalyst material works at lower temperatures and does not suffer major drops in performance when processing ''wet'' exhaust, resolving a major drawback in conventional vanadium oxide catalysts. They found that the unaggregated dispersal of atomic tungsten in the original crystal structure plays a key role in how it functions. (2021-01-26)

Boosting the efficiency of carbon capture and conversion systems
Researchers at MIT have developed a method to boost the performance of carbon capture systems that use catalytic surfaces to enhance the rates of carbon-sequestering electrochemical reactions. (2021-01-25)

MRI helps unravel the mysteries of sleep
Scientists at EPFL and the Universities of Geneva, Cape Town and Bochum have joined forces to investigate brain activity during sleep with the help of MRI scans. It turns out our brains are much more active than we thought. (2021-01-22)

Teamwork in a molecule
Chemists at the Friedrich Schiller University Jena have demonstrated the value of 'teamwork' by successfully harnessing the interaction between two gallium atoms in a novel compound to split the particularly strong bond between fluorine and carbon. The gallium compound is also cheaper and more environmentally friendly than conventional alternatives. (2021-01-21)

Researchers make domestic high-performance bipolar membranes possible
A team led by Prof. XU Tongwen and Prof WU Liang from the University of Science and Technology of China (USTC) of the Chinese Academy of Sciences (CAS) adopted an in-situ growth idea to construct a stable and efficient membrane (2021-01-21)

Giving the hydrogen economy an acid test
Tsukuba University scientists show that the effectiveness of hydrogen-producing metal catalysts protected by graphene depends on the ability of protons to penetrate into the inner metallic surface. This work may lead to widely available hydrogen-powered cars. (2021-01-14)

Catalyticity of molybdenum-dinitrogen complexes in organic reactions
Molybdenum dinitrogen complexes supported by monodentate arylsilylamido ligand, [Ar(Me3Si)N]3MoN2Mg(THF)2[N(SiMe3)Ar] and [Ar(Me3Si)N]3MoN2SiMe3 (Ar = 3,5-Me2C6H3) were synthesized and structurally characterized, which were proved to be effective catalysts for the disproportionation of cyclohexadienes and isomerization of terminal alkenes. 1H NMR spectrum suggested that the bridging nitrogen ligand remains intact during the catalytic reaction, indicating the possible catalytic ability of Mo-N=N motif. (2021-01-14)

Catalysts: worth taking a closer look
Metal surfaces play a role as catalysts for many important applications - from fuel cells to the purification of car exhaust gases. However, their behaviour is decisively affected by oxygen atoms incorporated into the surface. This phenomenon has been known for a long time, but until now it has been impossible to precisely investigate the role of oxygen in complex surfaces point by point in order to understand the chemical background at the atomic level. (2021-01-13)

Making hydrogen energy with the common nickel
POSTECH joint research team develops a nickel-based catalyst system doped with oxophilic transition metal elements. (2021-01-12)

Sustainable transportation: clearing the air on nitrogen doping
Researchers from the University of Tsukuba elucidated the initial reaction pathways on the pyridinic nitrogen atoms at the armchair edges of doped carbon catalysts for the oxygen reduction reaction in proton-exchange membrane fuel cells. This will help optimize a low-carbon technology for future transportation needs. (2021-01-12)

Study shows meaningful lockdown activity is more satisfying than busyness
With much of the world practicing varying degrees of social distancing and lockdown, researchers have been investigating the key to happiness in isolation. (2021-01-11)

Study shows tweaking one layer of atoms on a catalyst's surface can make it work better
When an LNO catalyst with a nickel-rich surface carries out a water-splitting reaction, its surface atoms rearrange from a cubic to a hexagonal pattern and its efficiency doubles. Deliberately engineering the surface to take advantage of this phenomenon offers a way to design better catalysts. (2021-01-11)

Expanding the boundaries of CO2 fixation
Design and realization of synthetic enzymes open up an alternative to natural photorespiration (2021-01-09)

Nanocrystals that eradicate bacteria biofilm
POSTECH-UNIST joint research team finds ways to control the surface texture of nanostructures. (2021-01-08)

Better together: Scientists discover applications of nanoparticles with multiple elements
As catalysts for fuel cells, batteries and processes for carbon dioxide reduction, alloy nanoparticles that are made up of five or more elements are shown to be more stable and durable than single-element nanoparticles. (2021-01-04)

Researchers regenerate deactivated catalyst in methanol-to-olefins process
Researchers from DICP regenerated deactivated catalyst in industrially important methanol-to-olefins (MTO) process by directly transforming the coke deposited on the zeolite catalyst to active intermediates rather than burning off to carbon oxide. (2021-01-04)

Turning the heat down: Catalyzing ammonia formation at lower temperatures with ruthenium
Scientists at Tokyo Institute of Technology (Tokyo Tech) report that the metal ruthenium, supported with lanthanide oxyhydrides, can efficiently catalyze the synthesis of ammonia at a much lower temperature than the traditional approach. In their new study, they highlight the advantages of the oxyhydride support and its potential in becoming a feasible catalyst for low-temperature ammonia synthesis in the future. (2020-12-23)

Page 1 of 25 | 1000 Results
   First   Previous   Next      Last is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to