Current Chemical Engineering News and Events

Current Chemical Engineering News and Events, Chemical Engineering News Articles.
Sort By: Most Relevant | Most Viewed
Page 1 of 25 | 1000 Results
Researchers grow artificial hairs with clever physics trick
Things just got hairy at Princeton. Researchers found they could coat a liquid elastic on the outside of a disc and spin it to form useful, complex patterns. When spun just right, tiny spindles rise from the material as it cures. The spindles grow as the disc accelerates, forming a soft solid that resembles hairs. Published in PNAS Feb. 22 (2021-02-22)

New technology enables predictive design of engineered human cells
Northwestern University synthetic biologists have developed a design-driven process to build complex genetic circuits for cellular engineering. The new technology utilizes computational modeling to more efficiently identify useful genetic designs before building them in the lab. Faced with myriad possibilities, modeling points researchers to designs that offer real opportunity. The researchers constructed a variety of genetic programs to carry out desired and useful functions in human cells and found the programs worked as predicted. And the designs worked the first time. (2021-02-19)

Biotechnologists developed an effective technology for nutrient biocapture from wastewater
Biotechnologists from RUDN University in collaboration with Lomonosov MSU and Kurchatov institute made an important contribution to the technology of phosphate and nitrate biocapture from wastewater using Lobosphaera algae fixed on the filters.The biomass obtained in the course of this process can be used as a fertilizer. (2021-02-19)

Giving oxygen to the question of air quality
Volatile alkanes can rapidly acquire oxygen atoms in a free radical chain reaction, a process significant for fuel combustion and air pollution. (2021-02-18)

Spin hall effect of light with near 100% efficiency
POSTECH-KAIST joint research team develops perfect SHEL using anisotropic metasurfaces. (2021-02-18)

Modeling a better catalyst for PIBSAs
Polyisobutenyl succinic anhydrides (PIBSAs) are important for the auto industry because of their wide use in lubricant and fuel formulations. New research led by the Computer-Aided Nano and Energy Lab (CANELa) at the University of Pittsburgh, in collaboration with the Lubrizol Corporation, builds a deeper understanding of the catalyst used to synthesize PIBSAs. (2021-02-17)

Edible holograms could someday decorate foods
Holograms are everywhere, from driver's licenses to credit cards to product packaging. And now, edible holograms could someday enhance foods. Researchers reporting in ACS Nano have developed a laser-based method to print nanostructured holograms on dried corn syrup films. The edible holograms could also be used to ensure food safety, label a product or indicate sugar content, the researchers say. (2021-02-17)

Termite gut microbes could aid biofuel production
Wheat straw, the dried stalks left over from grain production, is a potential source of biofuels and commodity chemicals. But before straw can be converted to useful products by biorefineries, the polymers that make it up must be broken down into their building blocks. Now, researchers reporting in ACS Sustainable Chemistry & Engineering have found that microbes from the guts of certain termite species can help break down lignin, a particularly tough polymer in straw. (2021-02-17)

Tapping into waste heat for electricity by nanostructuring thermoelectric materials
Thermoelectric semiconductors can convert waste heat into useful electricity. However, obtaining lead-free semiconductors with high thermoelectric performance has proven to be difficult. Now, scientists from Chung-Ang University, Korea, have developed a novel strategy to produce tin telluride (SnTe) nanosheets directly from tin selenide nanosheets (SnSe), the latter of which are easier to fabricate. Their strategy paves the way for better nanostructuring in SnTe, which greatly enhances its thermoelectric properties. (2021-02-16)

The water surface is a fantastic place for chemical reactions
Using an advanced technique, scientists from the RIKEN Cluster for Pioneering Research have demonstrated that a chemical reaction powered by light takes place ten thousand times faster at the air-water interface--what we usually call the water surface--than in the bulk of the water, even when the light has equivalent energy. This finding could help our understanding of the many important chemical and biological processes that take place at the water surface. (2021-02-15)

Luminescent windows generate energy from inside and out
Rice University engineers design and build windowpanes that redirect sunlight or illumination from indoors to edge-band solar cells. (2021-02-15)

Move over heavy goggles, here come the ultra-high refractive index lenses
POSTECH professor Junsuk Rho's research team develops a transparent silicon without visible light loss by controlling the silicon atomic structure. (2021-02-14)

A novel approach to determine how carcinogenic bacteria find their targets
The gram-negative bacteria Helicobacter pylori (H. pylori) colonize the stomachs of the majority of the world's population. Although most people may never experience major complications due to the pathogen, H. pylori infections increase the risk of certain types of gastric cancer, as well as other illnesses such as peptic ulcers and gastritis. (2021-02-10)

Creating more sustainable fragrances with biotech
In the face of a changing climate and crop diseases, manufacturers of products containing natural flavors and fragrances are pivoting to a new way to source ingredients. Companies have been partnering with biotechnology firms to manufacture scents and flavors using fermented microbes, which experts say are more sustainable. A new story in Chemical & Engineering News (C&EN), the weekly newsmagazine of the American Chemical Society, details how the industry is brewing up new fragrances. (2021-02-10)

Researchers use hot nano-chisel to create artificial bones in a Petri dish
In research in the journal Advanced Functional Materials, a team at the NYU Tandon School of Engineering and New York Stem Cell Foundation Research Institute (NYSF) detail a system allowing them to sculpt, in a biocompatible material, the exact structure of the bone tissue, with features smaller than the size of a single protein -- a billion times smaller than a meter. (2021-02-09)

Synthetic protein quality control system in bacteria
Synthetic protein quality control system in bacteria. (2021-02-08)

NTUsg researchers develop flexible piezoelectric crystal
A team of researchers led by Nanyang Technological University, Singapore (NTU Singapore) has developed a new material, that when electricity is applied to it, can flex and bend forty times more than other materials in the same class, opening the way to better micro machines. (2021-02-08)

A single-molecule guide to understanding chemical reactions better
Scientists at Tokyo Institute of Technology (Tokyo Tech) report measurement of electrical conductivity of single DNA molecules as a way of monitoring the formation of double-stranded DNA on a gold surface. In their latest paper, they investigate the time evolution of the reaction and report findings not observed previously, demonstrating the suitability of the single-molecule approach in elucidating reaction pathways and exploring novel chemical processes. (2021-02-04)

Mysterious organic scum boosts chemical reaction efficiency, may reduce chemical waste
Chemical manufacturers frequently use toxic solvents such as alcohols and benzene to make products like pharmaceuticals and plastics. Researchers are examining a previously overlooked and misunderstood phenomenon in the chemical reactions used to make these products. This discovery brings a new fundamental understanding of catalytic chemistry and a steppingstone to practical applications that could someday make chemical manufacturing less wasteful and more environmentally sound. (2021-02-04)

Urban agriculture in Chicago does not allow consumers to rely solely on local food
Environmentally conscious consumers try to 'buy local' when food shopping. Now, a study of food raised around Chicago has shown that buying local can't provide all necessary nutrients for area residents, though it could fulfill their needs if some nutrients were supplied as supplements. The researchers report in ACS' Environmental Science & Technology that urban agriculture made little difference in reducing overall land area, and thus distance, required to supply all nutritional needs. (2021-02-03)

What the Biden-Harris administration means for chemistry
The inauguration of Joe Biden and Kamala Harris marks a new era for science policy in the U.S. and beyond. The new administration has inherited a global pandemic and worsening climate change, among other science-related issues. A cover story in Chemical & Engineering News (C&EN), the weekly newsmagazine of the American Chemical Society, delves into what this means for chemists and chemistry as a whole. (2021-02-03)

Toxin-antitoxin function fuels antibiotic-resistance research
Toxin-antitoxin (TA) systems are now known to negatively control plasmid replication, according to Thomas Wood, Biotechnology Endowed Chair and professor of chemical engineering in the Penn State College of Engineering. (2021-02-01)

Detecting trace amounts of multiple classes of antibiotics in foods
Widespread use of antibiotics in human healthcare and livestock husbandry has led to trace amounts of the drugs ending up in food products. Long-term consumption could cause health problems, but it's been difficult to analyze more than a few antibiotics at a time because they have different chemical properties. Now, researchers reporting in ACS' Journal of Agricultural and Food Chemistry have developed a method to simultaneously measure 77 antibiotics in a variety of foods. (2021-01-27)

Researchers use nanomaterials to make 2D diamond clusters at room temperature
2D hexagonal boron nitride (h-BN) is a promising material that can undergo transition to strong, super lightweight films. Researchers at the NYU Tandon School of Engineering led by Elisa Riedo have discovered that h-BN in layered, molecule-thin 2D sheets can phase transition to c-BN at room temperature. (2021-01-26)

UMass Amherst researchers develop technique to replicate bone-remodeling processes
A multidisciplinary research team at the University of Massachusetts Amherst's Institute for Applied Life Sciences (IALS) have developed a technique to replicate bone tissue complexity and bone-remodeling processes. This breakthrough could help researchers further their study of bone biology and assist in improving development of drugs for osteoporosis. (2021-01-26)

Targeted coating improves graphene oxide membranes for nanofiltration
A research group led by Prof. WAN Yinhua from the Institute of Process Engineering (IPE) of the Chinese Academy of Sciences developed a stable graphene oxide nanofiltration membrane with uniform pore size to remove organic micropollutants. (2021-01-22)

Electron transfer discovery is a step toward viable grid-scale batteries
The way to boost electron transfer in grid-scale batteries is different than researchers had believed, a new study from the University of Michigan has shown. (2021-01-21)

A display that completely blocks off counterfeits
POSTECH research team led by Professor Junsuk Rho develops nanostructures capable of polarized optical encryption. (2021-01-21)

Lasers create miniature robots from bubbles (video)
Robots are widely used to build cars, paint airplanes and sew clothing in factories, but the assembly of microscopic components, such as those for biomedical applications, has not yet been automated. Lasers could be the solution. Now, researchers reporting in ACS Applied Materials & Interfaces have used lasers to create miniature robots from bubbles that lift, drop and manipulate small pieces into interconnected structures. (2021-01-20)

COVID-19 model reveals key role for innate immunity in controlling viral load
Since SARS-CoV-2 was identified in December 2019, researchers have worked feverishly to study the novel coronavirus. Although much knowledge has been gained, scientists still have a lot to learn about how SARS-CoV-2 interacts with the human body, and how the immune system fights it. Now, researchers reporting in ACS Pharmacology & Translational Science have developed a mathematical model of SARS-CoV-2 infection that reveals a key role for the innate immune system in controlling viral load. (2021-01-20)

New biodegradable polyurethane foams are developed from wheat straw
The polyurethane foams have several industrial uses. Now, a new paper, published on the front page of Polymers, was able to obtain them from biomass in order to avoid using petroleum by-products in their manufacturing (2021-01-19)

Decoding breast milk to make better baby formula (video)
What makes breast milk so good for babies? In this episode of Reactions, our host, Sam, chats with chemist Steven Townsend, Ph.D., who's trying to figure out which sugar molecules in breast milk make it so unique and difficult to mimic. (2021-01-19)

Male butterflies mark their mates with repulsive smell during sex to 'turn off' other suitors
Butterflies have evolved to produce a strongly scented chemical in their genitals that they leave behind after sex to deter other males from pursuing their women - scientists have found. Researchers discovered a chemical made in the sex glands of the males of one species of tropical butterfly is identical to a chemical produced by flowers to attract butterflies. The study published in PLOS Biology today (19 January 2021) identified a gene for the first time. (2021-01-19)

Inexpensive battery charges rapidly for electric vehicles, reduces range anxiety
Range anxiety, the fear of running out of power before being able to recharge an electric vehicle, may be a thing of the past, according to a team of Penn State engineers who are looking at lithium iron phosphate batteries that have a range of 250 miles with the ability to charge in 10 minutes. (2021-01-18)

Lasers & molecular tethers create perfectly patterned platforms for tissue engineering
Researchers at the University of Washington have developed a technique to modify naturally occurring biological polymers with protein-based biochemical messages that affect cell behavior. Their approach, published the week of Jan. 18, 2021 in the Proceedings of the National Academy of Sciences, uses a near-infrared laser to trigger chemical adhesion of protein messages to a scaffold made from biological polymers such as collagen, a connective tissue found throughout our bodies. (2021-01-18)

New tool removes chemotherapy drugs from water systems
'What goes in, must come out' is a familiar refrain. It is especially pertinent to the challenges facing UBC researchers who are investigating methods to remove chemicals and pharmaceuticals from public water systems. Cleaning products, organic dyes and pharmaceuticals are finding their ways into water bodies with wide-ranging negative implications to health and the environment, explains Dr. Mohammad Arjmand, an assistant professor of mechanical engineering at UBC Okanagan. (2021-01-18)

Newly developed GaN based MEMS resonator operates stably even at high temperature
JST PRESTO researcher developed a MEMS resonator that stably operates even under high temperatures by regulating the strain caused by the heat from gallium nitride (GaN). This device is small, highly sensitive and can be integrated with CMOS technology promising for the application to 5G communication, IoT timing device, on-vehicle applications, and advanced driver assistance system. (2021-01-15)

Breathing easier with a better tracheal stent
New research led by the University of Pittsburgh is poised to drastically improve the use of tracheal stents for children with airway obstruction. Researchers demonstrate for the first time the successful use of a completely biodegradable magnesium-alloy tracheal stent that safely degrades and does not require removal. (2021-01-15)

Conductive nature in crystal structures revealed at magnification of 10 million times
In groundbreaking materials research, a team led by University of Minnesota Professor K. Andre Mkhoyan has made a discovery that blends the best of two sought-after qualities for touchscreens and smart windows--transparency and conductivity. (2021-01-15)

Spilling the beans on coffee's true identity
People worldwide want their coffee to be both satisfying and reasonably priced. To meet these standards, roasters typically use a blend of two types of beans, arabica and robusta. But, some use more of the cheaper robusta than they acknowledge, as the bean composition is difficult to determine after roasting. Now, researchers reporting in ACS' Journal of Agricultural and Food Chemistry have developed a new way to assess exactly what's in that cup of joe. (2021-01-13)

Page 1 of 25 | 1000 Results
   First   Previous   Next      Last   
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.