Current Chemical Physics News and Events

Current Chemical Physics News and Events, Chemical Physics News Articles.
Sort By: Most Relevant | Most Viewed
Page 1 of 25 | 1000 Results
Scientists propose a new heavy particle similar to the Higgs boson
Unlike the Higgs boson, discovered at CERN's Large Hadron Collider in 2012 after a 40-year quest, the new particle proposed by these researchers is so heavy that it could not be produced directly even in this collider The University of Granada is among the participants in this major scientific advancement in Theoretical Physics, which could help unravel the mysteries of dark matter (2021-02-23)

Researchers grow artificial hairs with clever physics trick
Things just got hairy at Princeton. Researchers found they could coat a liquid elastic on the outside of a disc and spin it to form useful, complex patterns. When spun just right, tiny spindles rise from the material as it cures. The spindles grow as the disc accelerates, forming a soft solid that resembles hairs. Published in PNAS Feb. 22 (2021-02-22)

Giving oxygen to the question of air quality
Volatile alkanes can rapidly acquire oxygen atoms in a free radical chain reaction, a process significant for fuel combustion and air pollution. (2021-02-18)

Ultrafast electron dynamics in space and time
Often depicted as colourful balloons or clouds, electron orbitals provide information on the whereabouts of electrons in molecules, a bit like fuzzy snapshots. In order to understand the exchange of electrons in chemical reactions, it is not only important to know their spatial distribution but also their motion in time. Scientists from Julich, Marburg, and Graz have now made huge progress in this direction: They successfully recorded orbital images with an extremely high temporal resolution. (2021-02-18)

New physics rules tested on quantum computer
Simulation of non-Hermitian quantum mechanics using a quantum computer goes beyond centuries old conventions (2021-02-15)

The water surface is a fantastic place for chemical reactions
Using an advanced technique, scientists from the RIKEN Cluster for Pioneering Research have demonstrated that a chemical reaction powered by light takes place ten thousand times faster at the air-water interface--what we usually call the water surface--than in the bulk of the water, even when the light has equivalent energy. This finding could help our understanding of the many important chemical and biological processes that take place at the water surface. (2021-02-15)

Scientists discovered new physical effects important for the ITER reactor operation
The energy of the future lies in the area of the controlled thermonuclear fusion. Researchers discovered new effects, which affect the energy flow in the reactor. The theoretical predictions were confirmed by the experiments on two tokamaks. The research results were published in the scientific journal 'Plasma Physics and Controlled Fusion'. (2021-02-11)

Combination of pine scent and ozone as super source of particulate emissions
Scientists have managed to figure out why conifer forests produce so many fine particles into the atmosphere. Aerosol particles are particularly abundant when ?-pinene, the molecule responsible for the characteristic pattern of pine trees reacts with atmospheric ozone. (2021-02-11)

Industrial compound gets eco-friendly reaction
Nagoya University scientists have developed a chemical reaction that produces high yields of a compound used in a wide variety of industries, without needing high temperatures or toxic catalysts. The approach offers a practical and sustainable solution for industrial (meth)acrylate (= acrylate or methacrylate) ester synthesis. (2021-02-10)

Porous materials unfavorable for coronavirus survival
As COVID-19 spreads via respiratory droplets, researchers have become increasingly interested in the drying of droplets on impermeable and porous surfaces; surfaces that accelerate evaporation can decelerate the spread of the virus. In Physics of Fluids, researchers show a droplet remains liquid for a much shorter time on a porous surface, making it less favorable to survival of the virus. On paper and cloth, the virus survived for only three hours and two days, respectively. (2021-02-09)

Researchers produce tiny nanoparticles and reveal their inner structure for the first time
Tiny nanoparticles can be furnished with dyes and could be used for new imaging techniques, as chemists and physicists at Martin Luther University Halle-Wittenberg (MLU) show in a recent study. The researchers have also been the first to fully determine the particles' internal structure. Their results were published in the renowned journal Angewandte Chemie. (2021-02-08)

A magnetic twist to graphene
By combining ferromagnets and two rotated layers of graphene, researchers open up a new platform for strongly interacting states using graphene's unique quantum degree of freedom. (2021-02-08)

Mathematics developed new classes of stellar dynamics systems solutions
The Vlasov-Poisson equations describe many important physical phenomena such as the distribution of gravitating particles in the interstellar space, high-temperature plasma kinetics, and the Landau damping effect. A joint team of scientists from the Mathematical Institute of RUDN University and the Mathematical Institute of the University of Munich suggested a new method to obtain stationary solutions for a system of Vlasov-Poisson equations in a three-dimensional case. (2021-02-05)

A single-molecule guide to understanding chemical reactions better
Scientists at Tokyo Institute of Technology (Tokyo Tech) report measurement of electrical conductivity of single DNA molecules as a way of monitoring the formation of double-stranded DNA on a gold surface. In their latest paper, they investigate the time evolution of the reaction and report findings not observed previously, demonstrating the suitability of the single-molecule approach in elucidating reaction pathways and exploring novel chemical processes. (2021-02-04)

Hierarchical dynamics
Researchers investigate signal transfer in proteins across multiple time scales (2021-02-03)

Solving complex physics problems at lightning speed
A calculation so complex that it takes twenty years to complete on a powerful desktop computer can now be done in one hour on a regular laptop. Physicist Andreas Ekström at Chalmers University of Technology, together with international research colleagues, has designed a new method to calculate the properties of atomic nuclei incredibly quickly. (2021-02-01)

Searching for dark matter through the fifth dimension
Theoretical physicists of the PRISMA+ Cluster of Excellence at Johannes Gutenberg University Mainz are working on a theory that goes beyond the Standard Model of particle physics. The central element is an extra dimension in spacetime. Until now, the scientists have faced the problem that the predictions of their theory could not be tested experimentally. They have now overcome this problem in a publication in the current issue of the European Physical Journal C. (2021-02-01)

Dewdrops on a spiderweb reveal the physics behind cell structures
Researchers in the laboratories of Princeton University scientists Joshua Shaevitz, Howard Stone, and Sabine Petry have discovered that surface tension drives the liquid-like protein TPX2 to form globules that nucleate the formation of branching microtubules during cell division. The paper detailing these discoveries appeared in the Jan 28 issue of the journal Nature Physics. (2021-01-29)

Dalian coherent light source reveals the origin of interstellar medium S2 fragments
Researchers observed the C+S2 product channel from CS2 photodissociation for the first time using a home-made Time-Sliced Velocity Map Ion Imaging (TS-VMI) experimental setup, based on the Dalian Coherent Light Source (DCLS). (2021-01-28)

New catalyst moves seawater desalination, hydrogen production closer to commercialization
Seawater is abundant and cheap, making it a tempting resource to meet the world's growing need for clean drinking water and carbon-free energy. Now researchers from the University of Houston have reported a new catalyst that can be made quickly and inexpensively, bringing the technology closer to commercial reality. (2021-01-28)

Nuclear physicist's voyage towards a mythical island
Theories were introduced as far back as the 1960s about the possible existence of superheavy elements. Their most long-lived atomic nuclei could give rise to a so-called ''island of stability'' far beyond the element uranium. However, a new study, led by nuclear physicists at Lund University, shows that a 50-year-old nuclear physics manifesto must now be revised. (2021-01-26)

The surprises of color evolution
Nature is full of colour. For flowers, displaying colour is primarily a means to attract pollinators. Insects use their colour vision not only to locate the right flowers to feed on but also to find mates. The evolutionary interaction between insects and plants has created complex dependencies that can have surprising outcomes. Casper van der Kooi, a biologist at the University of Groningen, uses an interdisciplinary approach to analyse the interaction between pollinators and flowers. (2021-01-25)

Magnetic waves explain mystery of Sun's outer layer
in a new study published in The Astrophysical Journal, researchers combined observations from a telescope in New Mexico, the United States, with satellites located near Earth to identify a link between magnetic waves in the chromosphere and areas of abundant ionised particles in the hot outer atmosphere. (2021-01-22)

Single atoms as a catalyst: Surprising effects ensue
Catalysts are getting smaller - ''single-atom'' catalysts are the logical end point of this downsizing. However, individual atoms can no longer be described using the rules developed from larger pieces of metal, so the rules used to predict which metals will be good catalysts must be revamped - this has now been achieved at TU Wien. As it turns out, single atom catalysts based on much cheaper materials might be even more effective. (2021-01-22)

Innovations through hair-thin optical fibres
Scientists at the University of Bonn have built hair-thin optical fibre filters in a very simple way. They are not only extremely compact and stable, but also colour-tunable. This means they can be used in quantum technology and as sensors for temperature or for detecting atmospheric gases. The results have been published in the journal ''Optics Express''. (2021-01-20)

Russian chemists developed polymer cathodes for ultrafast batteries
Russian researchers have synthesized and tested new polymer-based cathode materials for lithium dual-ion batteries. The tests showed that the new cathodes withstand up to 25,000 operating cycles and charge in a matter of seconds, thus outperforming lithium-ion batteries. The cathodes can also be used to produce less expensive potassium dual-ion batteries. (2021-01-19)

Decoding breast milk to make better baby formula (video)
What makes breast milk so good for babies? In this episode of Reactions, our host, Sam, chats with chemist Steven Townsend, Ph.D., who's trying to figure out which sugar molecules in breast milk make it so unique and difficult to mimic. (2021-01-19)

Male butterflies mark their mates with repulsive smell during sex to 'turn off' other suitors
Butterflies have evolved to produce a strongly scented chemical in their genitals that they leave behind after sex to deter other males from pursuing their women - scientists have found. Researchers discovered a chemical made in the sex glands of the males of one species of tropical butterfly is identical to a chemical produced by flowers to attract butterflies. The study published in PLOS Biology today (19 January 2021) identified a gene for the first time. (2021-01-19)

Spreading the sound
Tsukuba University scientists describe the diffusion of sound in disordered materials, such as glass, using a new mathematical model. This work may lead to stronger and cheaper displays for touchscreen devices. (2021-01-15)

Researchers resolve controversy over energy gap of Van der Waals material
Scanning tunneling microscopy and spectroscopy measurements revealed that the energy gap of chromium tribromide is around 0.3 electron volt (eV), which is much smaller than optical measurements, which ranged from 1.68 to 2.1 eV. (2021-01-15)

Physical virology shows the dynamics of virus reproduction
The reproductive cycle of viruses requires self-assembly, maturation of virus particles and, after infection, the release of genetic material into a host cell. New physics-based technologies allow scientists to study the dynamics of this cycle and may eventually lead to new treatments. (2021-01-14)

New way to control electrical charge in 2D materials: Put a flake on it
Gaining control of the flow of electrical current through atomically thin materials is important to potential future applications in photovoltaics or computing. Physicists in Arts & Sciences at Washington University in St. Louis have discovered one way to locally add electrical charge to a graphene device. (2021-01-14)

Quantum computers to study the functioning of the molecules of life
A breakthrough that has implications for molecular biology, pharmacology and nanotechnologies. The fields of application are many. Identifying the mechanisms behind neurodegenerative processes in some proteins, for example, can help limit their proliferation. Understanding how a protein takes on a certain shape can open the way to use the nanomachines that nature has designed to cut, edit or block damaged or defective genes. Their study was published in the international academic journal Physical Review Letters (2021-01-14)

Eastern and central China become brighter due to clean air action
A new study finds that the air pollution control actions can lead to not only considerable environmental and health improvements, but also increases in solar photovoltaic energy production. (2021-01-13)

Turbulent dynamics in the human brain could revolutionize the understanding of its functionality
According to a new study, published on 8 December in Cell Reports, by Gustavo Deco, director of the Center for Brain and Cognition, and Morten L. Kringelbach, researcher at the Department of Psychiatry of the University of Oxford (United Kingdom) and the Center for Music in the Brain of the University of Aarhus (Denmark). (2021-01-12)

Wearable electronics for continuous cardiac, respiratory monitoring
A small and inexpensive sensor, announced in Applied Physics Letters and based on an electrochemical system, could potentially be worn continuously by cardiac patients or others who require constant monitoring. A solution containing electrolyte substances is placed into a small circular cavity that is capped with a thin flexible diaphragm, allowing detection of subtle movements when placed on a patient's chest. The authors suggest their sensor could be used for diagnosis of respiratory diseases. (2021-01-12)

Can sodium-ion batteries replace trusty lithium-ion ones?
Sodium-ion batteries are a potential replacement for lithium batteries, but different anodes are needed for the same level of performance. Amorphous carbon is known to be a useful anode, because it has defects and voids that can be used to store sodium ions. Nitrogen/phosphorus-doped carbon also offers appealing electrical properties. In Applied Physics Reviews, researchers describe how they applied basic physical concepts of atomic scale to build high-performance anodes for sodium-ion batteries. (2021-01-12)

Singing a tumor test song
Singing may be the next-generation, noninvasive approach to determining the health of a patient's thyroid. When a person sings, the vibrations create waves in the tissue near the vocal tract called shear waves. If a tumor is present in the thyroid, the elasticity of its surrounding tissue increases, stiffening, and causing the shear waves to accelerate. Using ultrasound imaging to measure these waves, researchers can determine the elasticity of the thyroid tissue. (2021-01-12)

Enlightening dark ions
Every field has its underlying principles. For economics it's the rational actor; biology has the theory of evolution; modern geology rests on the bedrock of plate tectonics. (2021-01-12)

A charge-density-wave topological semimetal
A novel material has been discovered that is characterised by the coupling of a charge density wave with the topology of the electronic structure. (2021-01-09)

Page 1 of 25 | 1000 Results
   First   Previous   Next      Last is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to