Current Crystal Structure News and Events

Current Crystal Structure News and Events, Crystal Structure News Articles.
Sort By: Most Relevant | Most Viewed
Page 1 of 25 | 1000 Results
The perfect recipe for efficient perovskite solar cells
A long-cherished dream of materials researchers is a solar cell that converts sunlight into electrical energy as efficiently as silicon, but that can be easily and inexpensively fabricated from abundant materials. Scientists at the Helmholtz-Zentrum Berlin have now come a step closer to achieving this. (2021-02-22)

Concept for a new storage medium
Physicists from Switzerland, Germany and Ukraine have proposed an innovative new data storage medium. The technique is based on specific properties of antiferromagnetic materials that had previously resisted experimental examination. (2021-02-22)

Covid-19: Future targets for treatments rapidly identified with new computer simulations
Researchers have detailed a mechanism in the distinctive corona of Covid-19 that could help scientists to rapidly find new treatments for the virus, and quickly test whether existing treatments are likely to work with mutated versions as they develop. (2021-02-19)

RUDN University chemist used iodine to synthesize new chalcogenides
A chemist from RUDN University, working with a group of colleagues, synthesized three new chalcogenides (compounds that contain metals and elements from group 16 of the periodic table). The team suggested an unusual approach to synthesis that was based on iodine. (2021-02-19)

New crystalline ice form
Three years ago, chemists at the University of Innsbruck found evidence for the existence of a new variety of ice. Until then, 18 types of crystalline ice were known. The team led by Thomas Loerting now reports in Nature Communications on the elucidation of the crystal structure of ice XIX using neutron diffraction. (2021-02-18)

Locked MOFs are the key to high porosity
Sophisticated geometry design gives rise to a new form of crystalline material. (2021-02-18)

Dennis tamed the protein from hell in seven years
A research group from Aarhus University has succeeded in understanding why a very extended structure is important for an essential protein from the human immune system. The new results offer new opportunities for adjusting the activity of the immune system both up and down. Stimulation is interesting in relation to cancer treatment, while inhibition of the immune system is used in treatment of autoimmune diseases. (2021-02-17)

Upending complex crystal formation
PNNL researchers discover a new route to forming complex crystals. (2021-02-17)

Kagome graphene promises exciting properties
For the first time, physicists from the University of Basel have produced a graphene compound consisting of carbon atoms and a small number of nitrogen atoms in a regular grid of hexagons and triangles. This honeycomb-structured ''kagome lattice'' behaves as a semiconductor and may also have unusual electrical properties. In the future, it could potentially be used in electronic sensors or quantum computers. (2021-02-15)

Scientists manipulate magnets at the atomic scale
Fast and energy-efficient future data processing technologies are on the horizon after an international team of scientists successfully manipulated magnets at the atomic level. Physicist Dr Rostislav Mikhaylovskiy from Lancaster University said: ''With stalling efficiency trends of current technology, new scientific approaches are especially valuable. Our discovery of the atomically-driven ultrafast control of magnetism opens broad avenues for fast and energy-efficient future data processing technologies essential to keep up with our data hunger.'' (2021-02-12)

Wafer-scale production of graphene-based photonic devices
Graphene Flagship researchers have devised a wafer-scale fabrication method that paves the way to the next generation of telecom and datacom devices. (2021-02-11)

The chemistry lab inside cells
Osaka University scientists describe a novel protein that spurs the post-translational modifications of the amino acid tryptophan to create an enzyme cofactor. This work may lead to the creation of new biological catalysts. (2021-02-10)

Tailor-made drugs to treat epilepsy or cardiovascular diseases
In order for a drug to be effective at the right places in the body, it helps if scientists can predict as accurately as possible how the molecules of that drug will interact with human cells. In a joint research project, scientists from Leipzig University and the Chinese Academy of Sciences in Shanghai have succeeded in elucidating such a structure, namely that of the neuropeptide Y receptor Y2 with one of its ligands. (2021-02-10)

Scientists create liquid crystals that look a lot like their solid counterparts
New kinds of liquid crystals developed at the University of Colorado Boulder resemble gypsum or lazulite crystals--except that they flow like fluids. (2021-02-10)

Samara Polytech chemists simplify crystal structures
Samara Polytech scientists have developed new methods of modelling the crystal structure of chemical substances, which makes it possible to obtain additional information about the object under study, unknown in the initial experimental data, and also to find regularities determining its structure and properties. (2021-02-09)

Researchers produce tiny nanoparticles and reveal their inner structure for the first time
Tiny nanoparticles can be furnished with dyes and could be used for new imaging techniques, as chemists and physicists at Martin Luther University Halle-Wittenberg (MLU) show in a recent study. The researchers have also been the first to fully determine the particles' internal structure. Their results were published in the renowned journal Angewandte Chemie. (2021-02-08)

'Magnetic graphene' forms a new kind of magnetism
Researchers have identified a new form of magnetism in so-called magnetic graphene, which could point the way toward understanding superconductivity in this unusual type of material. (2021-02-08)

Trapping gases better with boron nitride "nanopores"
Porous activated carbon (AC) is well-known for its ability to efficiently trap gases and help in catalyzing chemical reactions on its surface. Lately, boron nitride (BN), with a structure similar to that of carbon, has emerged as an attractive alternative to carbon. Now, in a new study, scientists from Japan reveal superior gas confinement in porous BN compared with that of AC, thereby unveiling a novel material to take high-performance adsorption to the next level. (2021-02-05)

Forests of the world in 3D
Primeval forests are of great importance for biodiversity and global carbon and water cycling. The three-dimensional structure of forests plays an important role because it influences processes of gas and energy exchange with the atmosphere, and provides habitats for numerous species. An international research team led by Göttingen University investigated the variety of different complex structures found in the world's forests, and the factors that explain this diversity. Results were published in Nature Communications. (2021-02-05)

New way to power up nanomaterials for electronic applications
UCLA materials scientists and colleagues have discovered that perovskites, a class of promising materials that could be used for low-cost, high-performance solar cells and LEDs, have a previously unutilized molecular component that can further tune the electronic property of perovskites. (2021-02-05)

Quasicrystal-clear: Material reveals unique shifting surface structure under microscope
Ever since their discovery, quasicrystals have garnered much attention due to their strange structure. Today, they remain far from being well-understood. In a new study, scientists reveal, for the first time, a unique shifting surface atomic structure in a material emulating quasicrystals, opening doors to the better understanding of magnetic and superconducting properties of quasicrystals, and potential applications in semiconductor film growth. (2021-02-04)

Switching nanolight on and off
The report demonstrates a new method to control the flow of light of nanolight. Optical manipulation on the nanoscale, or nanophotonics, has become a critical area of interest as researchers seek ways to meet the increasing demand for technologies that go well beyond what is possible with conventional photonics and electronics. (2021-02-04)

Retrained generic antibodies can recognize SARS-CoV-2
An alternative approach to train the immunity response is offered by researchers at the University of Illinois Chicago and California State University at Sacramento who have developed a novel strategy that redirects antibodies for other diseases existing in humans to the spike proteins of SARS-CoV-2. (2021-02-03)

Tiny 3D structures enhance solar cell efficiency
A new method for constructing special solar cells could significantly increase their efficiency. Not only are the cells made up of thin layers, they also consist of specifically arranged nanoblocks. This has been shown in a new study by an international research team led by the Martin Luther University Halle-Wittenberg (MLU), which was published in the scientific journal ''Nano Letters''. (2021-02-02)

Hydrogen-producing enzyme protects itself against oxygen
Hydrogen-producing enzymes are beacons of hope in biohydrogen research. However, they are so vulnerable to oxygen in the air that it has not been possible to exploit their potential on a larger scale. The recently discovered [FeFe]-hydrogenase CbA5H from the bacterium Clostridium beijerinckii resists the oxygen attack. (2021-02-02)

Researchers design next-generation photodetector
The new long-wavelength infrared photodetector from Professor Manijeh Razeghi could be used in night vision, optical communication, and thermal and medical imaging. (2021-02-02)

Skoltech imaging resources used in international experiment with new photocatalysts
Skoltech researchers helped their colleagues from Japan, Germany, the United States, and China study the crystal structure and optical properties of a new class of two-dimensional compounds, which can be used as effective visible-light-responsive photocatalysts for energy and chemical conversion. They used the Advanced Imaging Core Facility equipment for imaging and structural analysis. (2021-02-01)

Tungsten-substituted vanadium oxide breathes fresh air into catalyst technology
Tokyo, Japan - Researchers from Tokyo Metropolitan University have created a new tungsten-substituted vanadium oxide catalyst for breaking down harmful nitrogen oxides in industrial exhaust. Their new catalyst material works at lower temperatures and does not suffer major drops in performance when processing ''wet'' exhaust, resolving a major drawback in conventional vanadium oxide catalysts. They found that the unaggregated dispersal of atomic tungsten in the original crystal structure plays a key role in how it functions. (2021-01-26)

Beauty in imperfection: How crystal defects can help convert waste heat into electricity
Half-Heusler Ni-based alloys are thermoelectric materials with the potential for converting waste heat into electricity. However, the origin of their impressive conversion efficiency is not entirely clear. In a recent study, scientists from Japan and Turkey have attempted to uncover the role that Ni defects have in the crystal structure of these alloys and how their desirable thermoelectric properties are a consequence of small changes in strain around defective sites. (2021-01-26)

Microstructured optical fibers find their 3D-printed groove
Advanced laser-printing techniques prove ideal for creating tiny optical communication devices with complex internal structures. (2021-01-25)

Advanced measurement technology for future semiconductor devices
A team of researchers led by Osaka University investigated beta-gallium oxide (β-Ga2O3), an emerging semiconductor for next-generation power devices, using an advanced method involving terahertz waves -- the technology that could replace conventional yet invasive electrical semiconductor characterizations. (2021-01-25)

Ba7Nb4MoO20-based materials with high oxygen-ion conductivity opening sustainable future
Scientists at Tokyo Institute of Technology , Imperial and High Energy Accelerator Research Organization (KEK) Institute of Materials Structure Science, discover new Ba7Nb4MoO20-based materials with high oxygen-ion (oxide-ion O2-) conductivities--''the hexagonal perovskite-related oxides''--and shed light on the underlying mechanisms responsible for their conductivity. Their findings lead the way to uncovering other similar materials, furthering research on developing low-cost and scalable renewable energy technologies. (2021-01-25)

Better bundled: new principle for generating X-rays
X-rays are usually difficult to direct and guide. X-ray physicists at the University of Göttingen have developed a new method with which the X-rays can be emitted more precisely in one direction. To do this, the scientists use a structure of thin layers of materials with different densities of electrons to simultaneously deflect and focus the generated beams. The results of the study were published in the journal Science Advances. (2021-01-25)

Crystal structures in super slow motion
Laser beams are used to change the properties of materials in an extremely precise way. However, the underlying processes generally take place at such unimaginably fast speeds and at such a small scale that they have so far eluded direct observation. Göttingen researchers have now managed to film, for the first time, the laser transformation of a crystal structure with nanometre resolution and in slow motion in an electron microscope. The results were published in Science. (2021-01-22)

A method for calculating optimal parameters of liquid chrystal displays developed at RUDN University
A professor from RUDN University together with his colleagues from Saratov Chernyshevsky State University and D. Mendeleev University of Chemical Technology of Russia developed a method for calculating the parameters of diffraction optical elements used in LCDs. In particular, the new technology can be used to expand the angle of view while preserving high resolution and color rendition. (2021-01-22)

A professor from RUDN University developed new liquid crystals
A professor from RUDN University together with his Indian colleagues synthesized and studied new dibenzophenazine-based liquid crystals that could potentially be used in optoelectronics and solar panels. (2021-01-22)

Crystal close up
Two novel techniques, atomic-resolution real-time video and conical carbon nanotube confinement, allow researchers to view never-before-seen details about crystal formation. The observations confirm theoretical predictions about how salt crystals form and could inform general theories about the way in which crystal formation produces different ordered structures from an otherwise disordered chemical mixture. (2021-01-21)

Fans of less successful football clubs are more loyal to one another
Research led by the universities of Kent and Oxford has found that fans of the least successful Premier League football teams have a stronger bond with fellow fans and are more 'fused' with their club than supporters of the most successful teams. (2021-01-21)

Squeezing a rock-star material could make it stable enough for solar cells
A promising lead halide perovskite is great at converting sunlight to electricity, but it breaks down at room temperature. Now scientists have discovered how to stabilize it with pressure from a diamond anvil cell. The required pressure is well within the reach of industrial manufacturing requirements. (2021-01-21)

Defects may help scientists understand the exotic physics of topology
Real-world materials are usually messier than the idealized scenarios found in textbooks. Imperfections can add complications and even limit a material's usefulness. To get around this, scientists routinely strive to remove defects and dirt entirely, pushing materials closer to perfection. Now, researchers at the University of Illinois at Urbana-Champaign have turned this problem around and shown that for some materials defects could act as a probe for interesting physics, rather than a nuisance. (2021-01-21)

Page 1 of 25 | 1000 Results
   First   Previous   Next      Last   
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.