Current Crystal Structure News and Events

Current Crystal Structure News and Events, Crystal Structure News Articles.
Sort By: Most Relevant | Most Viewed
Page 1 of 25 | 1000 Results
Experimental evidence of an intermediate state of matter between a crystal and a liquid
Scientists from the Joint Institute for High Temperatures Russian Academy of Sciences (JIHT RAS) and Moscow Institute of Physics and Technology (MIPT) have experimentally confirmed the presence of an intermediate phase between the crystalline and liquid states in a monolayer dusty plasma system. (2021-01-19)

Light-induced twisting of Weyl nodes switches on giant electron current
Scientists at the U.S. Department of Energy's Ames Laboratory and collaborators at Brookhaven National Laboratory and the University of Alabama at Birmingham have discovered a new light-induced switch that twists the crystal lattice of the material, switching on a giant electron current that appears to be nearly dissipationless. (2021-01-19)

Direct quantification of topological protection in photonic edge states at telecom wavelengths
Photonic topological insulators are currently at the forefront of on-chip photonic research due to their potential for loss-free information transport. Realized in photonic crystals, they enable robust propagation of optical states along domain walls. But how robust is robust? In order to answer this, researchers from TU Delft and AMOLF in the Netherlands quantified photonic edge state transport using phase-resolved near-field optical microscopy. The findings provide a crucial step towards error-free integrated photonic quantum networks (2021-01-18)

Modulating helical nanostructures in liquid crystal phase by molecular design
Toyohashi University of Technology has successfully developed sulfur-containing liquid crystal (LC) dimer molecules, which exhibit a helical liquid crystal phase, over a wide temperature range. It is that the ester bond direction in the molecular structures largely impacts the pitch lengths of helical nanostructures in the NTB phase. It is expected that this molecular design can be used to tune the resultant physical properties of LC materials that would contribute to new LC technologies. (2021-01-18)

Conductive nature in crystal structures revealed at magnification of 10 million times
In groundbreaking materials research, a team led by University of Minnesota Professor K. Andre Mkhoyan has made a discovery that blends the best of two sought-after qualities for touchscreens and smart windows--transparency and conductivity. (2021-01-15)

Towards applications: ultra-low-loss on-chip zero-index materials
Dirac-cone materials behave like an isotropic and impedance-matched zero-index medium at Dirac-point wavelength, enabling light-matter interactions in a spatially uniform optical mode with arbitrary shapes. However, such interactions are limited to small areas because of the propagation loss. Scientists designed an ultra-low-loss and homogeneous zero-index material by introducing resonance-trapped bound states in the continuum. This design paves the way for leveraging perfect spatial coherence of large-area zero-index materials in linear, nonlinear, and quantum optics (2021-01-14)

Bio-inspired spiral hydrogel fiber qualified to be surgical suture
A team led by Prof. YU Shuhong from the University of Science and Technology of China reported a bio-inspired lotus-fiber-mimetic spiral structure BC hydrogel fiber with high strength, high toughness, excellent biocompatibility, good stretchability, and high energy dissipation. (2021-01-14)

Blue-light stride in perovskite-based LEDs
Researchers at Linköping University, Sweden, have developed efficient blue light-emitting diodes based on halide perovskites. ''We are very excited about this breakthrough'', says Feng Gao, professor at Linköping University. The new LEDs may open the way to cheap and energy-efficient illumination. (2021-01-13)

Catalysts: worth taking a closer look
Metal surfaces play a role as catalysts for many important applications - from fuel cells to the purification of car exhaust gases. However, their behaviour is decisively affected by oxygen atoms incorporated into the surface. This phenomenon has been known for a long time, but until now it has been impossible to precisely investigate the role of oxygen in complex surfaces point by point in order to understand the chemical background at the atomic level. (2021-01-13)

Scientists have synthesized an unusual superconducting barium superhydride
A new exotic compound, BaH12, has been discovered by experiment and theory. Unusually, it is a molecular metal and demonstrates the superconducting transition around 20?K at 140?GPa (2021-01-12)

Can sodium-ion batteries replace trusty lithium-ion ones?
Sodium-ion batteries are a potential replacement for lithium batteries, but different anodes are needed for the same level of performance. Amorphous carbon is known to be a useful anode, because it has defects and voids that can be used to store sodium ions. Nitrogen/phosphorus-doped carbon also offers appealing electrical properties. In Applied Physics Reviews, researchers describe how they applied basic physical concepts of atomic scale to build high-performance anodes for sodium-ion batteries. (2021-01-12)

Core design strategy for fire-resistant batteries
The Korea Institute of Science and Technology(KIST) is proud to announce that the research team of Dr. Sang-baek Park at the Center for Energy Materials Research, in collaboration with the research team of Professor Hyun-jung Shin of Sungkyunkwan University, has developed a breakthrough material design strategy that can overcome the problem of high interfacial resistance between the solid electrolyte and the cathode, which is an obstacle to the commercialization of all-solid-state batteries. (2021-01-11)

Researchers develop new one-step process for creating self-assembled metamaterials
A team led by University of Minnesota Twin Cities researchers has discovered a groundbreaking one-step process for creating materials with unique properties, called metamaterials. (2021-01-11)

'Swiss Army knife' catalyst can make natural gas burn cleaner
'Swiss Army knife' catalyst can bring the combustion temperature of methane down by about half - from above 1400 degrees Kelvin down to 600 to 700 degrees Kelvin. (2021-01-11)

Transition metal 'cocktail' helps make brand new superconductors
Researchers from Tokyo Metropolitan University mixed and designed a new, high entropy alloy (HEA) superconductor, using extensive data on simple superconducting substances with a specific crystal structure. HEAs are known to preserve superconducting characteristics up to extremely high pressures. The new superconductor, Co0.2Ni0.1Cu0.1Rh0.3Ir0.3Zr2, has a superconducting transition at 8K, a relatively high temperature for an HEA. (2021-01-09)

A charge-density-wave topological semimetal
A novel material has been discovered that is characterised by the coupling of a charge density wave with the topology of the electronic structure. (2021-01-09)

Study reveals structure of protein and permits search for drugs against neglected diseases
Discovery by Brazilian scientists paves the way for the study of more potent molecules capable of directly destroying parasites underlying elephantiasis and cutaneous leishmaniasis, with fewer adverse side-effects. (2021-01-07)

Researcher cracks the hidden strengthening mechanism in biological ceramics
In addition to adding strength, this design allows the structure to use its crack patterns to minimize damage into the inner shell. (2021-01-06)

Old silicon learns new tricks
Researchers from Nara Institute of Science and Technology fabricated regular arrays of iron-coated silicon crystals that are atomically smooth. The defect-free pyramidal composition of the crystals impart magnetic properties that will enhance the functionality of 3D spintronics and other technologies. (2021-01-06)

Mechanophores: Making polymer crystallization processes crystal clear
Scientists at the Tokyo Institute of Technology (Tokyo Tech) have come up with a new technique to evaluate the mechanical forces generated in polymer crystallization as they cool down from their molten state. In a new study published in Nature Communications, they used small, fluorescent molecules to visualize the crystallization process, guiding manufacturers in their goals to optimize polymer materials. (2021-01-05)

2D CaCl crystals with +1 calcium ions displaying unexpected metallicity and ferromagnetism
Counter to conventional wisdom that the only valence state of Ca ions under ambient conditions is +2 and corresponding crystals are insulating and nonferromagnetic, scientists in China made exciting discoveries of two-dimensional CaCl crystals with +1 calcium ions, which have unexpected metallicity, room-temperature ferromagnetism, heterojunction, piezoelectricity-like property, and distinct hydrogen storage and release capability, showing great potential applications of such abnormal material in designing novel electric and magnetic devices with a size down to atomic scale. (2021-01-05)

A high order for a low dimension
Spintronics refers to a suite of physical systems which may one day replace many electronic systems. To realize this generational leap, material components that confine electrons in one dimension are highly sought after. For the first time, researchers created such a material in the form of a special bismuth-based crystal known as a high-order topological insulator. (2021-01-04)

Uncovering how plants see blue light
Plants can perceive and react to light across a wide spectrum. New research from the UC Davis College of Biological Sciences shows how plants can respond to blue light in particular by revealing the structure of cryptochrome-2, the molecule that reacts to blue light. (2021-01-04)

Atomic-scale nanowires can now be produced at scale
Researchers from Tokyo Metropolitan University have discovered a way to make self-assembled nanowires of transition metal chalcogenides at scale using chemical vapor deposition. By changing the substrate where the wires form, they can tune how these wires are arranged, from aligned configurations of atomically thin sheets to random networks of bundles. This paves the way to industrial deployment in next-gen industrial electronics, including energy harvesting, and transparent, efficient, even flexible devices. (2020-12-24)

Shapeshifting crystals-varying stability in different forms of gallium selenide monolayers
The gallium selenide monolayer has been recently discovered to have an alternative crystal structure and has diverse potential applications in electronics. Understanding its properties is crucial to understand its functions. Now, scientists from the Japan Advanced Institute of Science and Technology and the University of Tokyo have explored its structural stability, electronic states, and transformation of crystal phases. (2020-12-24)

Perfect transmission through barrier using sound
A research team led by Professor Xiang Zhang, President of the University of Hong Kong (HKU) when he was a professor at the University of California, Berkeley, (UC Berkeley) has for the first time experimentally proved a century old quantum theory that relativistic particles can pass through a barrier with 100% transmission. (2020-12-23)

Chemists synthesize 'flat' silicon compounds
Chemists at the University of Bonn (Germany) have synthesized extremely unusual compounds. Their central building block is a silicon atom. Different from usual, however, is the arrangement of the four bonding partners of the atom, which are not in the form of a tetrahedron around it, but flat like a trapezoid. This arrangement is usually energetically extremely unfavorable, yet the molecules are very stable. The results appear in the Journal of the American Chemical Society. (2020-12-22)

Chemists describe a new form of ice
Scientists from the United States, China, and Russia have described the structure and properties of a novel hydrogen clathrate hydrate that forms at room temperature and relatively low pressure. Hydrogen hydrates are a potential solution for hydrogen storage and transportation, the most environmentally friendly fuel. (2020-12-22)

Scientists and philosopher team up, propose a new way to categorize minerals
Minerals are the most durable, information-rich objects we can study to understand our planet's origin and evolution. However, the current classification system leaves unanswered questions for planetary scientists, geobiologists, paleontologists and others who strive to understand minerals' historical context. A new evolutionary approach to classifying minerals complements the existing protocols and offers the opportunity to rigorously document Earth's history. (2020-12-21)

When light and atoms share a common vibe
Scientists from EPFL, MIT, and CEA Saclay demonstrate a state of vibration that exists simultaneously at two different times. They evidence this quantum superposition by measuring the strongest class of quantum correlations between light beams that interact with the vibration. (2020-12-18)

The latest magnesium studies pave the way for new biomedical materials
Materials used in biomedicine must be characterized by controlled biodegradability, sufficient strength and total absence of toxicity to the human body. The search for such materials is, therefore, not a simple task. In this context, scientists have been interested in magnesium for a long time. Recently, using such techniques as positron annihilation spectroscopy, the researchers were able to demonstrate that magnesium subjected to surface mechanical attrition treatment obtains the properties necessary for a biocompatible material. (2020-12-17)

SARS-CoV-2-like particles very sensitive to temperature
A new study found that moderate temperature increases on glass surfaces broke down SARS-CoV-2 virus-like particles structure, while humidity had very little impact. The findings suggest that as temperatures begin to drop, particles on surfaces will remain infectious longer. This is the first study to analyze the mechanics of the virus on an individual particle level, but the findings agree with large-scale observations of other coronaviruses that appear to infect more people during the winter. (2020-12-17)

Catalytic activity of individual cobalt oxide nanoparticles determined
Precious metal-free nanoparticles could serve as powerful catalysts in the future, for example for hydrogen production. To optimize them, researchers must be able to analyze the properties of individual particles. A new method for this has been suggested by a team from Ruhr-Universität Bochum and from the University of Duisburg-Essen. The group developed a method using a robotic arm that allows them to select individual particles under an electron microscope and place them on a nanoelectrode for electrochemical analysis. (2020-12-15)

Scientists discover a new complex europium hydride
A team of researchers from Russia, the United States, and China led by Skoltech Professor Artem R. Oganov has discovered an unexpected very complex europium hydride, Eu8H46. Although devoid of superconductivity, europium hydrides are very interesting in view of chemical anomalies that make europium different from other rare-earth atoms. (2020-12-15)

High-brightness source of coherent light spanning from the UV to THz
An international team of scientists reports in Nature Photonics on a novel technique for a high-brightness coherent and few-cycle duration source spanning 7 optical octaves from the UV to the THz. (2020-12-14)

When chemistry with green light mimics what happens in life
Taking inspiration from nature, researchers at Queensland University of Technology in Australia and Ghent University in Belgium created a green light-stabilised 3D polymer structure that unfolds itself when left in darkness - the first reported example of a reversible, light-triggered process to fold polymers into single chain nanoparticles. (2020-12-13)

Potential extreme condition history detector - recoverable PL achieved in pyrochlore
Photoluminescence (PL) is light emission from a substance after the absorption of photons stimulated by temperature, electricity, pressure, or chemistry doping. An international team of scientists led by Dr. Wenge Yang from Center for High Pressure Science &Technology Advanced Research (HPSTAR) presents a strong tricolor PL achieved in non-PL pyrochlore Ho2Sn2O7 through high pressure treatment. Interestingly the PL can be much enhanced after pressure release and recovered to ambient conditions. Their study is published in the recent issue of Physical Review Letters. (2020-12-11)

Researchers find a better way to design metal alloys
A system developed by MIT researchers uses machine learning to analyze boundaries between crystal grains, allowing for the selection of desired properties in a new metal alloy. (2020-12-11)

A theory as clear as glass
Scientists at The University of Tokyo ran molecular dynamics simulations to compose a more complete theory of the factors that drive crystallization instead of glass formation. They found that tiny changes in material composition can frustrate crystal growth, leading to vitrification. This work may lead to advances in the field of industrial glassmaking. (2020-12-11)

Single-crystal technology holds promise for next-generation lithium-ion batteries
Scientists have improved a promising battery technology, creating a single-crystal, nickel-rich cathode that is hardier and more efficient than before. It's one step toward improved lithium-ion batteries that are common in electric vehicles today. Increasing nickel content in the cathode is on the drawing board of lithium-ion battery makers largely because of its relatively low cost, wide availability and low toxicity compared to other key battery materials, such as cobalt. (2020-12-10)

Page 1 of 25 | 1000 Results
   First   Previous   Next      Last   
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.