Current Electronic Device News and Events

Current Electronic Device News and Events, Electronic Device News Articles.
Sort By: Most Relevant | Most Viewed
Page 1 of 25 | 1000 Results
Saki monkeys get screen time for more control over their lives in captivity
Scientists have designed and built an on-demand video device for white-faced saki monkeys to activate as and when they like. It's up to the animals to decide whether they want to step inside the device - the equivalent of pressing play - to watch the video of the week, from sealife like fish and jellyfish to wiggly worms and other zoo animals to abstract art and lush forests. (2021-02-23)

Polymer film protects from electromagnetic radiation, signal interference
In a breakthrough report published in Advanced Materials engineers at the University of California, Riverside describe a flexible film using a quasi-one-dimensional nanomaterial filler that combines excellent electromagnetic shielding with ease of manufacture. (2021-02-22)

Magnetic attraction: Breakthrough test for malaria
After nearly a decade of research, a new test that detects the magnetic properties of malaria-infected blood could soon be used to help eliminate the mosquito-borne disease. (2021-02-18)

3D-printing perovskites on graphene makes next-gen X-ray detectors
By using 3D aerosol jet-printing to put perovskites on graphene, scientists at EPFL have made X-ray detectors with record sensitivity that can greatly improve the efficiency and reduce the cost and health hazard of medical imaging devices. (2021-02-17)

Electrons living on the edge
University of Tsukuba researchers calculated the electronic structure of topological insulators excited by laser beams and found that massless states can be generated. This work may lead to a major advance in computer technology with circuits that generate less heat. (2021-02-17)

Harnessing socially-distant molecular interactions for future computing
Could long-distance interactions between individual molecules forge a new way to compute? A new study of electronic states induced by interactions between individual molecules has potential future application in computers where the state of each individual molecule could be controlled, mirroring binary operation of transistors in current computing. (2021-02-16)

A performance leap for Graphene modulators in next generation datacom and telecom
An international team of researchers reports in Nature Communications the development of a graphene-based optical modulator that proves outstanding performances in modulation efficiency, stability and high speed. (2021-02-16)

NREL heats up thermal energy storage with new solution meant to ease grid stress
Scientists from the National Renewable Energy Laboratory (NREL) have developed a simple way to better evaluate the potential of novel materials to store or release heat on demand in your home, office, or other building in a way that more efficiently manages the building's energy use. (2021-02-16)

New skin patch brings us closer to wearable, all-in-one health monitor
Engineers at the University of California San Diego have developed a soft, stretchy skin patch that can be worn on the neck to continuously track blood pressure and heart rate while measuring the wearer's levels of glucose as well as lactate, alcohol or caffeine. It is the first wearable device that monitors cardiovascular signals and multiple biochemical levels in the human body at the same time. (2021-02-15)

Graphene "nano-origami" creates tiniest microchips yet
A team of experimental physicists at the University of Sussex have developed the smallest microchips ever - 100 times smaller than conventional microchips. They believe that this next generation of microchips could lead to computers and phones running thousands of times faster. (2021-02-15)

Kagome graphene promises exciting properties
For the first time, physicists from the University of Basel have produced a graphene compound consisting of carbon atoms and a small number of nitrogen atoms in a regular grid of hexagons and triangles. This honeycomb-structured ''kagome lattice'' behaves as a semiconductor and may also have unusual electrical properties. In the future, it could potentially be used in electronic sensors or quantum computers. (2021-02-15)

Nanowire could provide a stable, easy-to-make superconducting transistor
MIT researchers developed a superconducting nanowire that could enable efficient, easy-to-make electronics. The advance could boost quantum computing, as well as magnetic sensors for applications in brain imaging and telescopes. (2021-02-11)

Monitoring the body's fat burning by breath
Your breath holds the key to monitoring fat burning, and now a research group from Tohoku University has created a compact and low-cost device that can measure how our body metabolizes fat. (2021-02-10)

A scalable method for the large-area integration of 2D materials
Graphene Flagship researchers report a new method to integrate graphene and 2D materials into semiconductor manufacturing lines, a milestone for the recently launched 2D-EPL project. (2021-02-10)

A new modifier increases the efficiency of perovskite solar cells
The research team of NUST MISIS has presented an improved structure of perovskite solar cells. Scientists have modified perovskite-based solar cells using MXenes -- thin two-dimensional titanium carbides with high electrical conductivity. The MXenes-based modified cells showed superior performance, with power conversion efficiency exceeding 19% (the reference demonstrated 17%) and improved stabilized power output with respect to reference devices. The results have been published in the Nano energy international scientific journal. (2021-02-09)

New way to power up nanomaterials for electronic applications
UCLA materials scientists and colleagues have discovered that perovskites, a class of promising materials that could be used for low-cost, high-performance solar cells and LEDs, have a previously unutilized molecular component that can further tune the electronic property of perovskites. (2021-02-05)

New quantum receiver the first to detect entire radio frequency spectrum
A new quantum sensor can analyze the full spectrum of radio frequency and real-world signals, unleashing new potentials for soldier communications, spectrum awareness and electronic warfare. (2021-02-04)

Switching nanolight on and off
The report demonstrates a new method to control the flow of light of nanolight. Optical manipulation on the nanoscale, or nanophotonics, has become a critical area of interest as researchers seek ways to meet the increasing demand for technologies that go well beyond what is possible with conventional photonics and electronics. (2021-02-04)

"Ghost particle" ML model permits full quantum description of the solvated electron
Pinning down the nature of bulk hydrated electrons has proven difficult experimentally because of their short lifetime and high reactivity. Theoretical exploration has been limited by the high level of electronic structure theory needed to achieve predictive accuracy. Now, joint work from teams at the University of Zurich and EPFL has resulted in a highly accurate machine-learning model inexpensive enough to allow for a full quantum statistical and dynamical description. (2021-02-03)

NTU Singapore team develops portable device that creates 3D images of skin in 10 minutes
A team from Nanyang Technological University, Singapore (NTU Singapore) has developed a portable device that produces high-resolution 3D images of human skin within 10 minutes. (2021-02-02)

Fine tuned: adjusting the composition and properties of semiconducting 2D alloys
Semiconducting 2D alloys could be key to overcoming the technical limitations of modern electronics. Although 2D Si-Ge alloys would have interesting properties for this purpose, they were only predicted theoretically. Now, scientists from Japan Advanced Institute of Science and Technology have realized the first experimental demonstration. They have also shown that the Si to Ge ratio can be adjusted to fine tune the electronic properties of the alloys, paving the way for novel applications. (2021-02-02)

How to blackmail your family
Raising kids can be tough, and sometimes you need all the help you can get. Biologists at the University of Bristol argue that some animals might be able to blackmail reluctant relatives into assisting with the rearing of young. The study is published today [2 February] in The American Naturalist. (2021-02-02)

Researchers create novel photonic chip
Researchers at the George Washington University and University of California, Los Angeles, have developed and demonstrated for the first time a photonic digital to analog converter without leaving the optical domain. Such novel converters can advance next-generation data processing hardware with high relevance for data centers, 6G networks, artificial intelligence and more. (2021-02-02)

Photonics research makes smaller, more efficient VR, augmented reality tech possible
Engineering researchers have developed and demonstrated a new approach for designing photonic devices. The advance allows them to control the direction and polarization of light from thin-film LEDs, paving the way for a new generation of virtual reality (VR) and augmented reality (AR) technologies. (2021-02-01)

Wearable sensor monitors health, administers drugs using saliva and tears
A new kind of wearable health device would deliver real-time medical data to those with eye or mouth diseases, according to Huanyu 'Larry' Cheng, Dorothy Quiggle Career Development Professor in the Penn State Department of Engineering Science and Mechanics (ESM). (2021-02-01)

Non-metallic electronic regulation in CuCo oxy-/thio-spinel as OER electrocatalysts
Researchers successfully prepared oxy-spinel of Cu1-xCo2+xO4 nanaoflakes and thio-spinel of Cu1-xCo2+xS4 nanospheres by a facile hydrothermal method. The resulting Cu1-xCo2+xO4 exhibits higher catalytic performances toward OER in alkaline media than Cu1-xCo2+xS4 for water oxidation. Experimentally and theoretically, the superior OER catalytic activity of Cu1-xCo2+xO4 nanoflakes mainly depends on the strongly-electronegativity of oxygen element in spinel structure, which determines the higher valence state of Co active sites in CuCo oxyspinel. (2021-02-01)

Beyond qubits: Sydney takes next big step to scale up quantum computing
Professor David Reilly and colleagues have invented a device that operates at 40 times colder than deep space to directly control thousands of qubits, the building blocks of quantum computers. (2021-02-01)

Accurate drug dosages with proton traps
Researchers at Linköping University, Sweden, have developed a proton trap that makes organic electronic ion pumps more precise when delivering drugs. The new technique may reduce drug side effects, and in the long term, ion pumps may help patients with symptoms of neurological diseases for which effective treatments are not available. The results have been published in Science Advances. (2021-01-29)

Skoltech team developed on-chip printed 'electronic nose'
Skoltech researchers and their colleagues from Russia and Germany have designed an on-chip printed 'electronic nose' that serves as a proof of concept for low-cost and sensitive devices to be used in portable electronics and healthcare. (2021-01-28)

First direct band gap measurements of wide-gap hydrogen using inelastic X-ray scattering
Utilizing a newly developed state-of-the-art synchrotron technique, a group of scientists led by Dr. Ho-kwang Mao, Director of HPSTAR, conducted the first-ever high-pressure study of the electronic band and gap information of solid hydrogen up to 90 GPa. (2021-01-26)

Wirelessly rechargeable soft brain implant controls brain cells
Researchers have invented a smartphone-controlled soft brain implant that can be recharged wirelessly from outside the body. It enables long-term neural circuit manipulation without the need for periodic disruptive surgeries to replace the battery of the implant. Scientists believe this technology can help uncover and treat psychiatric disorders and neurodegenerative diseases such as addiction, depression, and Parkinson's. (2021-01-26)

Biodegradable displays for sustainable electronics
Increasing use of electronic devices in consumables and new technologies for the internet of things are increasing the amount of electronic scrap. To save resources and minimize waste volumes, an eco-friendlier production and more sustainable lifecycle will be needed. Scientists of KIT have now been the first to produce displays, whose biodegradability has been checked and certified by an independent office. The results are reported in the Journal of Materials Chemistry. (DOI: 10.1039/d0tc04627b) (2021-01-26)

Solar material can 'self-heal' imperfections, new research shows
A material that can be used in technologies such as solar power has been found to self-heal, a new study shows. (2021-01-26)

Targeted health messaging needed in era of vaping, researchers say
Health authorities should develop targeted health messages for vaping product and e-liquid packaging to encourage smokers to switch from cigarettes to e-cigarettes and to prevent non-smokers from taking up vaping, a researcher at the University of Otago, Wellington, New Zealand, says. (2021-01-26)

A display that completely blocks off counterfeits
POSTECH research team led by Professor Junsuk Rho develops nanostructures capable of polarized optical encryption. (2021-01-21)

NUST MISIS scientists develop fastest-ever quantum random number generator
An international research team has developed a fast and affordable quantum random number generator. The device created by scientists from NUST MISIS, Russian Quantum Center, University of Oxford, Goldsmiths, University of London and Freie Universität Berlin produces randomness at a rate of 8.05 gigabits per second, which makes it the fastest random number generator of its kind. The study has been published in Physical Review X. (2021-01-20)

Optical data transmission speed increased by a factor of at least 10,000
The Korea Institute of Science and Technology(KIST) announced that able to generate laser pulses at a rate at least 10,000 times higher than the state of the art. This achievement was accomplished by inserting an additional resonator containing graphene into a fiber-optic pulsed-laser oscillator that operates in the domain of femtoseconds. The data transmission and processing speeds are expected to increase significantly by applying this method to data communications. (2021-01-19)

Light-induced twisting of Weyl nodes switches on giant electron current
Scientists at the U.S. Department of Energy's Ames Laboratory and collaborators at Brookhaven National Laboratory and the University of Alabama at Birmingham have discovered a new light-induced switch that twists the crystal lattice of the material, switching on a giant electron current that appears to be nearly dissipationless. (2021-01-19)

CMOS-compatible 3D ferroelectric memory with ultralow power and high speed
POSTECH Professor Jang-Sik Lee's research team develops ferroelectric NAND flash memory. (2021-01-18)

Scientists streamline process for controlling spin dynamics
Marking a major achievement in the field of spintronics, researchers at Brookhaven National Laboratory and Yale University have demonstrated the ability to control spin dynamics in magnetic materials by altering their thickness. The study, published today in Nature Materials, could lead to smaller, more energy-efficient electronic devices. (2021-01-18)

Page 1 of 25 | 1000 Results
   First   Previous   Next      Last   
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.