Current Electrons News and Events

Current Electrons News and Events, Electrons News Articles.
Sort By: Most Relevant | Most Viewed
Page 1 of 25 | 1000 Results
The magic angle of twisted graphene
Trapped tightly between two monolayers of carbon superimposed at a precise angle, electrons interact and can produce superconductivity. This is what UCLouvain's researchers reveal in an article published in Nature. This property allows electric power to circulate without any resistivity, without energy lost, within the nanostructure. (2021-02-23)

Magnetic effect without a magnet
Electric current is deflected by a magnetic field - this leads to the so-called Hall effect. A surprising discovery has now been made at TU Wien: an exotic metal was examined and a giant Hall effect was found to be produced by the material, in the total absence of any magnetic field. (2021-02-22)

Antibiotic tolerance study paves way for new treatments
The study in mice, 'A Multifaceted Cellular Damage Repair and Prevention Pathway Promotes High Level Tolerance to Beta-lactam Antibiotics,' published Feb. 3 in the journal EMBO Reports, reveals how tolerance occurs, thanks to a system that mitigates iron toxicity in bacteria that have been exposed to penicillin. (2021-02-22)

Ultrafast electron dynamics in space and time
Often depicted as colourful balloons or clouds, electron orbitals provide information on the whereabouts of electrons in molecules, a bit like fuzzy snapshots. In order to understand the exchange of electrons in chemical reactions, it is not only important to know their spatial distribution but also their motion in time. Scientists from Julich, Marburg, and Graz have now made huge progress in this direction: They successfully recorded orbital images with an extremely high temporal resolution. (2021-02-18)

RUDN University physicists analyzed the role of gravity in elementary particles formation
Gravity might play a bigger role in the formation of elementary particles than scientists used to believe. A team of physicists from RUDN University obtained some solutions of semi-classical models that describe particle-like waves. They also calculated the ratio between the gravitational interaction of particles and the interaction of their charges. (2021-02-17)

Electrons living on the edge
University of Tsukuba researchers calculated the electronic structure of topological insulators excited by laser beams and found that massless states can be generated. This work may lead to a major advance in computer technology with circuits that generate less heat. (2021-02-17)

Harnessing socially-distant molecular interactions for future computing
Could long-distance interactions between individual molecules forge a new way to compute? A new study of electronic states induced by interactions between individual molecules has potential future application in computers where the state of each individual molecule could be controlled, mirroring binary operation of transistors in current computing. (2021-02-16)

Moiré patterns facilitate discovery of novel insulating phases
Materials having excess electrons are typically conductors. However, moiré patterns -- interference patterns that typically arise when one object with a repetitive pattern is placed over another with a similar pattern -- can suppress electrical conductivity, a study led by physicists at the University of California, Riverside, has found. (2021-02-15)

Dual character of excitons in the ultrafast regime: atomic-like or solid-like?
Researchers at Politecnico di Milano in collaboration with the Institute of Photonics and Nanotechnologies IFN-CNR and a theory group from the Tsukuba University (Japan) and the Max Plank Institute for the Structure and Dynamics of matter (Hamburg, Germany), have discovered that an exciton can simultaneously adopt two radically different characters when it isstimulated by light. (2021-02-15)

Kagome graphene promises exciting properties
For the first time, physicists from the University of Basel have produced a graphene compound consisting of carbon atoms and a small number of nitrogen atoms in a regular grid of hexagons and triangles. This honeycomb-structured ''kagome lattice'' behaves as a semiconductor and may also have unusual electrical properties. In the future, it could potentially be used in electronic sensors or quantum computers. (2021-02-15)

A new quantum switch for electronics
A Russian physicist and his international colleagues studied a quantum point contact (QCP) between two conductors with external oscillating fields applied to the contact. They found that, for some types of contacts, an increase in the oscillation frequency above a critical value reduced the current to zero - a promising mechanism that can help create nanoelectronics components. (2021-02-11)

THz spectroscopy tracks electron solvation in photoionized water
''This work provides insights on the fundamental aspects of the charge transport process in water and lays a foundation for further understanding of the physicochemical properties and transient evolution of femtosecond-laser-pulse-excited plasma in water.'' (2021-02-09)

A magnetic twist to graphene
By combining ferromagnets and two rotated layers of graphene, researchers open up a new platform for strongly interacting states using graphene's unique quantum degree of freedom. (2021-02-08)

'Magnetic graphene' forms a new kind of magnetism
Researchers have identified a new form of magnetism in so-called magnetic graphene, which could point the way toward understanding superconductivity in this unusual type of material. (2021-02-08)

Harvard scientists use trilayer graphene to observe more robust superconductivity
Harvard scientists report successfully stacking three sheets of graphene and then twisting each of them at a magic angle to produce a three-layered structure that is not only capable of superconductivity but does so more robustly and at higher temperatures than many of the double-stacked graphene. (2021-02-04)

Tiny 3D structures enhance solar cell efficiency
A new method for constructing special solar cells could significantly increase their efficiency. Not only are the cells made up of thin layers, they also consist of specifically arranged nanoblocks. This has been shown in a new study by an international research team led by the Martin Luther University Halle-Wittenberg (MLU), which was published in the scientific journal ''Nano Letters''. (2021-02-02)

How do electrons close to Earth reach almost the speed of light?
In the Van Allen radiation belts, electrons can reach almost speed of light. Hayley Allison and Yuri Shprits, German Research Centre for Geosciences, have revealed conditions for such strong accelerations. They had demonstrated in 2020: during solar storm plasma waves play a crucial role. However, it remained unclear why ultra-relativistic electron energies are not achieved in all solar storms. In Science Advances they now show: extreme depletions of the background plasma density are crucial. (2021-02-02)

Novel photocatalyst effectively turns carbon dioxide into methane fuel with light
Decarbonising has become a prioritised mission in many countries and the science community is working on the ''carbon capture'' technologies. If the captured carbon dioxide could be converted into energy, then it would be killing two birds with one stone. A joint research team led by City University of Hong Kong (CityU) has developed a new photocatalyst which can produce methane gas (CH4) selectively and effectively from carbon dioxide using sunlight and mimicking photosynthesis. (2021-02-02)

A new hands-off probe uses light to explore electron behavior in a topological insulator
Topological insulators are one of the most puzzling quantum materials. Their edges are electron superhighways where electrons flow with no loss, while the bulk of the material blocks electron flow - properties that could be useful in quantum computing and information processing. Researchers at SLAC and Stanford used a process called high harmonic generation to separately probe electron behavior in both of those domains. The method should be applicable to a broad range of quantum materials. (2021-02-02)

Physicists create tunable superconductivity in twisted graphene 'nanosandwich'
MIT physicists have created tunable superconductivity in 'magic-angle' trilayer graphene. The structure may reveal conditions necessary for high-temperature superconductivity. The work was led by researchers in the Jarillo-Herrero research group. (2021-02-01)

New study investigates photonics for artificial intelligence and neuromorphic computing
Scientists have given a fascinating new insight into the next steps to develop fast, energy-efficient, future computing systems that use light instead of electrons to process and store information - incorporating hardware inspired directly by the functioning of the human brain. (2021-01-29)

A benchmark for single-electron circuits
Manipulating individual electrons with the goal of employing quantum effects offers new possibilities in electronics. In order to gain new insights into the physical origin and into metrological aspects of the small, but inevitable fundamental uncertainties governed by the rules of quantum mechanics, scientists from the Physikalisch-Technische Bundesanstalt(PTB) and the University of Latvia have collaborated to develop a statistical testing methodology. Their results have been published in the journal Nature Communications. (2021-01-26)

Better bundled: new principle for generating X-rays
X-rays are usually difficult to direct and guide. X-ray physicists at the University of Göttingen have developed a new method with which the X-rays can be emitted more precisely in one direction. To do this, the scientists use a structure of thin layers of materials with different densities of electrons to simultaneously deflect and focus the generated beams. The results of the study were published in the journal Science Advances. (2021-01-25)

Single atoms as a catalyst: Surprising effects ensue
Catalysts are getting smaller - ''single-atom'' catalysts are the logical end point of this downsizing. However, individual atoms can no longer be described using the rules developed from larger pieces of metal, so the rules used to predict which metals will be good catalysts must be revamped - this has now been achieved at TU Wien. As it turns out, single atom catalysts based on much cheaper materials might be even more effective. (2021-01-22)

Electrons caught in the act
Tsukuba University scientists create movies of the ultrafast motion of electrons traveling through an organic semiconductor with atomic-level resolution. This work may lead to more powerful and miniaturized smart devices. (2021-01-21)

Electron transfer discovery is a step toward viable grid-scale batteries
The way to boost electron transfer in grid-scale batteries is different than researchers had believed, a new study from the University of Michigan has shown. (2021-01-21)

Curtin find could slash energy use and cost in making silicon
Curtin University researchers have uncovered a method of making silicon, found commonly in electronics such as phones, cameras and computers, at room temperature. (2021-01-20)

Clocking electron movements inside an atom
Hard X-ray free-electron lasers (XFELs) have delivered intense, ultrashort X-ray pulses for over a decade. One of the most promising applications of XFELs is in biology, where researchers can capture images down to the atomic scale even before the radiation damage destroys the sample. In physics and chemistry, these X-rays can also shed light on the fastest processes occurring in nature with a shutter speed lasting only one femtosecond - equivalent to a millionth of a billionth of a second. (2021-01-19)

Scientists streamline process for controlling spin dynamics
Marking a major achievement in the field of spintronics, researchers at Brookhaven National Laboratory and Yale University have demonstrated the ability to control spin dynamics in magnetic materials by altering their thickness. The study, published today in Nature Materials, could lead to smaller, more energy-efficient electronic devices. (2021-01-18)

Rethinking spin chemistry from a quantum perspective
Summary Researchers at Osaka City University use quantum superposition states and Bayesian inference to create a quantum algorithm, easily executable on quantum computers, that accurately and directly calculates energy differences between the electronic ground and excited spin states of molecular systems in polynomial time. (2021-01-18)

Long-range energy transport in perovskite nanocrystal films
High efficiency solar cells and light-emitting devices are end-goal targets towards a more sustainable world. Nanostructures possess distinct advantages due to their exceptional optical and electronic properties under the influence of light. Yet, their wide-spread application in real-world devices is limited by their poor transport properties. Scientists discovered that nanocrystals made with halide perovskites, a recently discovered revolutionary semiconductor, can lead to long-range energy transfer, opening new avenues for future devices implementing disruptive nanotechnologies. (2021-01-12)

Using light to revolutionize artificial intelligence
An international team of researchers, including Professor Roberto Morandotti of the Institut national de la recherche scientifique (INRS), just introduced a new photonic processor that could revolutionize artificial intelligence, as reported by the prestigious journal Nature. (2021-01-11)

Discovery of quantum behavior in insulators suggests possible new particle
A team led by Princeton physicists discovered a surprising quantum phenomenon in an atomically thin insulator made of tungsten ditelluride. The results suggest the formation of completely new types of quantum phases previously hidden in insulators. (2021-01-11)

Entangling electrons with heat
Quantum entanglement is key for next-generation computing and communications technology, Aalto researchers can now produce it using temperature differences. (2021-01-08)

Engineers find antioxidants improve nanoscale visualization of polymers
Reactive molecules, such as free radicals, can be produced in the body after exposure to certain environments or substances and go on to cause cell damage. Antioxidants can minimize this damage by interacting with the radicals before they affect cells. (2021-01-08)

Researchers take key step toward cleaner, more sustainable production of hydrogen
Efficiently mass-producing hydrogen from water is closer to becoming a reality thanks to Oregon State University College of Engineering researchers and collaborators at Cornell University and the Argonne National Laboratory. (2021-01-08)

High-flux table-top source for femtosecond hard X-ray pulses
Researchers at the Max Born Institute (MBI) in Berlin have now accomplished a breakthrough in table-top generation of femtosecond X-ray pulses by demonstrating a stable pulse train at kilohertz repetition rate with a total flux of some 10^12 X-ray photons per second. (2021-01-07)

Researchers question fundamental study on the Kondo effect
In 1998, spectroscopic studies on the Kondo effect using scanning tunnelling microscopy were published, which are considered ground-breaking and have triggered countless others of a similar kind. Many of these studies may have to be re-examined now that researchers from Jülich, Germany have shown that the Kondo effect cannot be proven beyond doubt by this method. Instead, another phenomenon is creating precisely the spectroscopic ''fingerprint'' that was previously attributed to the Kondo effect. (2021-01-07)

A high order for a low dimension
Spintronics refers to a suite of physical systems which may one day replace many electronic systems. To realize this generational leap, material components that confine electrons in one dimension are highly sought after. For the first time, researchers created such a material in the form of a special bismuth-based crystal known as a high-order topological insulator. (2021-01-04)

Electrons hop to it on twisted molecular wires
Osaka University scientists show how purposely introducing twists into molecular wires can improve their electrical conductivity. This work may lead to sophisticated and more ecofriendly smartphones and other electronic devices. (2020-12-29)

Page 1 of 25 | 1000 Results
   First   Previous   Next      Last   
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.