Current Ion Channels News and Events

Current Ion Channels News and Events, Ion Channels News Articles.
Sort By: Most Relevant | Most Viewed
Page 1 of 25 | 1000 Results
New material is next step toward stable high-voltage long-life solid-state batteries
A team of researchers designed and manufactured a new sodium-ion conductor for solid-state sodium-ion batteries that is stable when incorporated into higher-voltage oxide cathodes. This new solid electrolyte could dramatically improve the efficiency and lifespan of this class of batteries. A proof of concept battery built with the new material lasted over 1000 cycles while retaining 89.3% of its capacity--a performance unmatched by other solid-state sodium batteries to date. (2021-02-23)

Selective concentration of cationic species
POSTECH Professor Geunbae Lim Develops a Multiscale-Porous Anion Exchange Membrane. (2021-02-18)

Capturing the contours of live cells with novel nanoimaging technique using graphene
Researchers from DGIST have now found a way to keep living, wet cells viable in an ultra-high-vacuum environment, using graphene, allowing--like never before--accurate high-resolution visualization of the undistorted molecular structure and distribution of lipids in cell membranes. This could enhance our bioimaging abilities considerably, improving our understanding of mechanisms underlying complex diseases such as cancers and Alzheimer's. (2021-02-17)

Highway tunnel for ions
We live in modern times, that is full of electronics. Smartphones, laptops, tablets, and many other devices need electrical energy to operate. Portable devices made our lives easier, so novel solutions in clean energy and its storage are desirable. Lithium-ion (Li-ion) batteries are the most common solutions that dominate the global market and are a huge problem due to their insufficient recovery. (2021-02-16)

A boost for plant research
Optogenetics can be used to activate and study cells in a targeted manner using light. Scientists at the University of Würzburg have now succeeded in transferring this technique to plants. (2021-02-16)

Getting the lead in
Researchers developed a low-cost, high-performance, sustainable lead-based anode for lithium-ion batteries that can power hybrid and all-electric vehicles. They also uncovered its previously unknown reaction mechanism during charge and discharge. (2021-02-16)

A new perceptually-consistent method for MSI visualization
Skoltech scientists have proposed a Mass Spectrometry Imaging (MSI) method leveraging the unique features of human vision (2021-02-11)

The therapeutic potential of peptides
There are more than 80 peptide drugs on the global market and about twice as many in clinical development. Due to their beneficial properties, these biomolecules play already an important role in the treatment of diseases. In Nature Reviews Drug Discovery, a team of Austrian and Australian scientists led by Markus Muttenthaler of the University of Vienna present an outlook on the latest trends in peptide drug discovery and development. (2021-02-10)

Nanoparticle gel unites oil and water in manufacturing-friendly approach
Oil and water may not mix, but adding the right nanoparticles to the recipe can convert these two immiscible fluids into an exotic gel with uses ranging from batteries to water filters to tint-changing smart windows. A new approach to creating this unusual class of soft materials could carry them out of the laboratory and into the marketplace. (2021-02-10)

From trash to treasure: Silicon waste finds new use in Li-ion batteries
Researchers at Osaka University used Si swarf and ultrathin graphite sheets to fabricate Li-ion battery electrodes with high areal capacity and current density at a reduced cost. Increasing generation of Si swarf as industrial waste and potential use of the high-performance batteries in electronic vehicles will allow their work to contribute to reduced greenhouse gas emissions and the achievement of SDGs. (2021-02-09)

Hearing acrobatics
The sense of hearing is, quite literally, a molecular tightrope act. Turns out, it involves acrobatics as well. New research shows that a dynamic and delicate connection between two pairs of diminutive protein filaments plays a central role in in hearing.The findings present a new understanding of the molecular underpinnings of hearing, as well as the sense of balance, which arises from similar processes in the inner ear. (2021-02-08)

Insights into lithium metal battery failure open doors to doubling battery life
Researchers led by Prof. CUI Guanglei from the Qingdao Institute of Bioenergy and Bioprocess Technology (QIBEBT) of the Chinese Academy of Sciences (CAS) have identified what causes lithium metal batteries (LMBs) to ''self-destruct'' and proposed a way to prevent it. (2021-02-08)

Silicon anode structure generates new potential for lithium-ion batteries
New research has identified a nanostructure that improves the anode in lithium-ion batteries. Instead of using graphite for the anode, the researchers turned to silicon: a material that stores more charge but is susceptible to fracturing. The team deposited silicon atoms on top of metallic nanoparticles to form an arched nanostructure, increasing the strength and structural integrity of the anode. Electrochemical tests showed the batteries had a higher charge capacity and longer lifespan. (2021-02-05)

Packing more juice in lithium-ion batteries through silicon anodes and polymeric coatings
Although silicon anodes could greatly boost the capacity of Li-ion batteries, their performance rapidly degrades with use. Polymeric coatings can help solve this problem, but very few studies have explored the underlying mechanisms. In a recent study, scientists from Japan Advanced Institute of Science and Technology investigate how a poly(borosiloxane) coating greatly stabilizes the capacity of silicon anodes, paving the way for better and more durable Li-ion batteries for electric cars and renewable energy harvesting. (2021-02-05)

The proton conduction mechanism in protic ionic liquids
Researchers from Niigata University, Japan along with their collaborators from Tokyo University of Science, Japan, Yamagata University, Japan and University of Regensburg, Germany have reported a marked shift in the hydrogen ion hopping mechanism as a function of acid/alkali index in protic ionic liquids. The study holds immense potential to revolutionize the development of protonic conductors for fuel cells. These promising results are now published in The Journal of Physical Chemistry B. (2021-02-04)

Solving chronic pain during intercourse
Women suffering from chronic conditions that result in painful intercourse represent about 10% of females of reproductive age - triggering a combined economic burden of more than $7.7 billion per year - yet scant knowledge about the origins of this pain is preventing an effective way to treat it. (2021-02-04)

SARS-CoV-2 under the helium ion microscope for the first time
Scientists at Bielefeld University's Faculty of Physics have succeeded for the first time in imaging the SARS-CoV-2 coronavirus with a helium ion microscope. In contrast to the more conventional electron microscopy, the samples do not need a thin metal coating in helium ion microscopy. This allows interactions between the coronaviruses and their host cell to be observed particularly clearly. The findings have been published in the Beilstein Journal of Nanotechnology. (2021-02-04)

Batteries that can be assembled in ambient air
POSTECH-Ulsan College joint research team develops a multi-functional separator membrane that traps impurities in the air. Opens the possibility of a battery manufacturing environment that reduces processing costs without a dry room. (2021-02-01)

Double delight: New synthetic transmembrane ion channel can be activated in two ways
Scientists at Tokyo Institute of Technology (Tokyo Tech) and University of Tokyo, Japan, have, for the first time, synthesized a novel artificial transmembrane ion channel--modelled on a naturally found transmembrane channel involved in neuron signaling--that responds to both chemical and electrical stimuli. Given its overall properties, this artificial channel opens doors to novel fundamental research into cellular transport and signaling, new possibilities in drug development, and the potential for new types of biosensors. (2021-02-01)

Production of 'post-lithium-ion batteries' requires new skills
Lithium-ion technology is expected to continue to dominate the market for rechargeable high-energy batteries over the next ten years. This is the conclusion reached by a team of battery researchers led by the University of Münster. (2021-01-29)

Accurate drug dosages with proton traps
Researchers at Linköping University, Sweden, have developed a proton trap that makes organic electronic ion pumps more precise when delivering drugs. The new technique may reduce drug side effects, and in the long term, ion pumps may help patients with symptoms of neurological diseases for which effective treatments are not available. The results have been published in Science Advances. (2021-01-29)

New ion trap to create the world's most accurate mass spectrometer
Mass spectrometers are widely used to analyze highly complex chemical and biological mixtures. Skoltech scientists have developed a new version of a mass spectrometer that uses rotation frequencies of ionized molecules in strong magnetic fields to measure masses with higher accuracy (FT ICR). The team has designed an ion trap that ensures the utmost resolving power in ultra-strong magnetic fields. (2021-01-28)

Chemists settle battery debate, propel research forward
A team of researchers led by chemists at Brookhaven National Laboratory has identified new details of the reaction mechanism that takes place in batteries with lithium metal anodes. The findings are a major step towards developing smaller, lighter, and less expensive batteries for electric vehicles. (2021-01-28)

Parkinson's disease risk and severity is tied to a channel in cells' 'recycling centers
Genetic variations associated with both increases and reductions in risk of the neurodegenerative disease alter the action of ion channels within cellular organelles called lysosomes, a new Penn study finds. (2021-01-27)

Change of course on the journey to the island of stability
An international research team succeeded in gaining new insights into the artificially produced superheavy element flerovium, element 114, at the accelerator facilities of the GSI Helmholtzzentrum für Schwerionenforschung in Darmstadt, Germany. Under the leadership of Lund University in Sweden and with significant participation of Johannes Gutenberg University Mainz (JGU) as well as the Helmholtz Institute Mainz (HIM) in Germany and other partners, flerovium was produced and investigated to determine whether it has a closed proton shell. (2021-01-26)

Charged up: revolutionizing rechargeable sodium-ion batteries with 'doped' carbon anodes
Rechargeable batteries like lithium-ion batteries (LIBs) are seeing a surge in demand as technologies like electric propulsion ships and other vehicles become increasingly popular. However, lithium is costly, which has driven the search for other options. Sodium-ion batteries (SIBs) are a more sustainable alternative but are thermodynamically unstable with graphite--the usual anode material. Now, researchers in Korea have developed a ''heteroatom-doped'' (modified) carbon-based anode that helps SIBs to surpass the performance of LIBs. (2021-01-25)

Ba7Nb4MoO20-based materials with high oxygen-ion conductivity opening sustainable future
Scientists at Tokyo Institute of Technology , Imperial and High Energy Accelerator Research Organization (KEK) Institute of Materials Structure Science, discover new Ba7Nb4MoO20-based materials with high oxygen-ion (oxide-ion O2-) conductivities--''the hexagonal perovskite-related oxides''--and shed light on the underlying mechanisms responsible for their conductivity. Their findings lead the way to uncovering other similar materials, furthering research on developing low-cost and scalable renewable energy technologies. (2021-01-25)

Highly efficient grid-scale electricity storage at fifth of cost
Researchers in WMG at the University of Warwick, in collaboration with Imperial College London, have found a way to enhance hybrid flow batteries and their commercial use. The new approach can store electricity in these batteries for very long durations for about a fifth the price of current technologies, with minimal location restraints and zero emissions. (2021-01-22)

Taking sieving lessons from nature
Nanostructure-templated electrochemical polymerization enhances speed and selectivity in organic membrane-based processes. (2021-01-21)

Researchers develop new graphene nanochannel water filters
Brown University researchers have shown that tiny channels between graphene sheets can be aligned in a way that makes them ideal for water filtration. (2021-01-21)

Oldest carbonates in the solar system
A meteorite that fell in northern Germany in 2019 contains carbonates which are among the oldest in the solar system; it also evidences the earliest presence of liquid water on a minute planet. The high-resolution Ion Probe - a research instrument at the Institute of Earth Sciences at Heidelberg University - provided the measurements. (2021-01-20)

New sodium oxide paves the way for advanced sodium-ion batteries
Skoltech researchers and their collaborators from France, the US, Switzerland, and Australia were able to create and describe a mixed oxide Na(Li1/3Mn2/3)O2 that holds promise as a cathode material for sodium-ion batteries, which can take one day complement or even replace lithium-ion batteries. (2021-01-20)

Merging technologies with color to avoid design failures
Various software packages can be used to evaluate products and predict failure; however, these packages are extremely computationally intensive and take a significant amount of time to produce a solution. Quicker solutions mean less accurate results. (2021-01-20)

How short circuits in lithium metal batteries can be prevented
There are high hopes for the next generation of high energy-density lithium metal batteries, but before they can be used in our vehicles, there are crucial problems to solve. An international research team led by Chalmers University of Technology, Sweden, has now developed concrete guidelines for how the batteries should be charged and operated, maximising efficiency while minimising the risk of short circuits. (2021-01-19)

Russian chemists developed polymer cathodes for ultrafast batteries
Russian researchers have synthesized and tested new polymer-based cathode materials for lithium dual-ion batteries. The tests showed that the new cathodes withstand up to 25,000 operating cycles and charge in a matter of seconds, thus outperforming lithium-ion batteries. The cathodes can also be used to produce less expensive potassium dual-ion batteries. (2021-01-19)

Healing ceramic electrolyte degraded by Li dendrite
Our research team has investigated the effect of post-annealing for healing Li garnet solid electrolyte degraded by the growth of Li dendrites. The ionic conductivity of the annealed solid electrolyte was slightly lower than that of the electrolyte before annealing but was retained above 10?4 S cm?1 at room temperature. The electrochemical results obtained indicate the possibility of reusing the solid electrolyte degraded by the growth of Li dendrites in another all-solid-state Li battery. (2021-01-18)

Filling a crucial gap in aquafarming: ion beam breeding to the rescue
Researchers at RIKEN, Japan successfully created a larger strain of zooplankton by creating mutations with a heavy ion beam, which contributes to improving the survival rate and growth of juvenile fish in aquaculture. (2021-01-15)

Scientists' discovery is paving the way for novel ultrafast quantum computers
Scientists at the Institute of Physics of the University of Tartu have found a way to develop optical quantum computers of a new type. Central to the discovery are rare earth ions that have certain characteristics and can act as quantum bits. These would give quantum computers ultrafast computation speed and better reliability compared to earlier solutions. The University of Tartu researchers Vladimir Hizhnyakov, Vadim Boltrushko, Helle Kaasik and Yurii Orlovskii published the results of their research in the scientific journal Optics Communications. (2021-01-15)

A scanning transmission X-ray microscope for analysis of chemical states of lithium
A new method to analyze chemical status of lithium was developed by using a synchrotron-based scanning transmission soft X-ray microscope (STXM). A key of the method is installation of a newly designed X-ray lens, a low-pass filtering zone plate, to the STXM to improve quality of a monochromatic X-ray. 2-dimensional chemical state of a test electrode of Li-ion battery was successfully analyzed with spatial resolution of 72 nm. (2021-01-14)

iCeMS makes highly conductive antiperovskites with soft anion lattices
A new structural arrangement of atoms shows promise for developing safer batteries made with solid materials. Scientists at Kyoto University's Institute for Integrated Cell-Material Sciences (iCeMS) designed a new type of 'antiperovskite' that could help efforts to replace the flammable organic electrolytes currently used in lithium ion batteries. Their findings were described in the journal Nature Communications. (2021-01-12)

Page 1 of 25 | 1000 Results
   First   Previous   Next      Last   
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.