Current Ions News and Events

Current Ions News and Events, Ions News Articles.
Sort By: Most Relevant | Most Viewed
Page 1 of 25 | 1000 Results
New material is next step toward stable high-voltage long-life solid-state batteries
A team of researchers designed and manufactured a new sodium-ion conductor for solid-state sodium-ion batteries that is stable when incorporated into higher-voltage oxide cathodes. This new solid electrolyte could dramatically improve the efficiency and lifespan of this class of batteries. A proof of concept battery built with the new material lasted over 1000 cycles while retaining 89.3% of its capacity--a performance unmatched by other solid-state sodium batteries to date. (2021-02-23)

Investigating the wave properties of matter with vibrating molecules
The working group led by Prof. Stephan Schiller, Ph.D. from Heinrich Heine University Düsseldorf (HHU) has used a novel, high-precision laser spectroscopic experiment to measure the internal vibration of the simplest molecule. This allowed the researchers to investigate the wave character of the motion of atomic nuclei with unprecedented accuracy. They present their findings in the current edition of Nature Physics. (2021-02-18)

How lithium-rich cathode materials for high energy EV batteries store charge at hig
High energy storage batteries for EVs need high capacity battery cathodes. New lithium-excess magnesium-rich cathodes are expected to replace existing nickel-rich cathodes but understanding how the magnesium and oxygen accommodate charge storage at high voltages is critical for their successful adaption. Research led by WMG, University of Warwick in collaboration with US researchers employed a range of X-ray studies to determine that the oxygen ions are facilitating the charge storage rather than the magnesium ions. (2021-02-18)

A 'twisted elevator' could be key to understanding neurological diseases
For the first time, researchers have found one of the most important molecular machines in our cells uses a 'twisting elevator' mechanism, solving a mystery of how it transports crucial chemical signals from one cell to another. (2021-02-17)

Highway tunnel for ions
We live in modern times, that is full of electronics. Smartphones, laptops, tablets, and many other devices need electrical energy to operate. Portable devices made our lives easier, so novel solutions in clean energy and its storage are desirable. Lithium-ion (Li-ion) batteries are the most common solutions that dominate the global market and are a huge problem due to their insufficient recovery. (2021-02-16)

Climate research: rapid formation of iodic particles over the Arctic
When sea ice melts and the water surface increases, more iodine-containing vapours rise from the sea. Scientists from the international research network CLOUD have now discovered that aerosol particles form rapidly from iodine vapours, which can serve as condensation nuclei for cloud formation. The CLOUD researchers, among them scientists from the Goethe University Frankfurt, fear a mutual intensification of sea ice melt and cloud formation, which could accelerate the warming of the Arctic and Antarctic. (2021-02-11)

A new perceptually-consistent method for MSI visualization
Skoltech scientists have proposed a Mass Spectrometry Imaging (MSI) method leveraging the unique features of human vision (2021-02-11)

Silicon anode structure generates new potential for lithium-ion batteries
New research has identified a nanostructure that improves the anode in lithium-ion batteries. Instead of using graphite for the anode, the researchers turned to silicon: a material that stores more charge but is susceptible to fracturing. The team deposited silicon atoms on top of metallic nanoparticles to form an arched nanostructure, increasing the strength and structural integrity of the anode. Electrochemical tests showed the batteries had a higher charge capacity and longer lifespan. (2021-02-05)

Nanotech plastic packaging could leach silver into some types of foods and beverages
Antimicrobial packaging is being developed to extend the shelf life and safety of foods and beverages. However, there is concern about the transfer of potentially harmful materials, such as silver nanoparticles, from these types of containers to consumables. Now, researchers reporting in ACS Applied Materials & Interfaces illustrate that silver embedded in an antimicrobial plastic can leave the material and form nanoparticles in foods and beverages, particularly in sweet and sugary ones. (2021-02-03)

New ion trap to create the world's most accurate mass spectrometer
Mass spectrometers are widely used to analyze highly complex chemical and biological mixtures. Skoltech scientists have developed a new version of a mass spectrometer that uses rotation frequencies of ionized molecules in strong magnetic fields to measure masses with higher accuracy (FT ICR). The team has designed an ion trap that ensures the utmost resolving power in ultra-strong magnetic fields. (2021-01-28)

Ions in molten salts can go 'against the flow'
In a new article published in the scientific journal Communications Chemistry, a research group at Uppsala University show, using computer simulations, that ions do not always behave as expected. In their research on molten salts, they were able to see that, in some cases, the ions in the salt mixture they were studying affect one another so much that they may even move in the ''wrong'' direction - that is, towards an electrode with the same charge. (2021-01-27)

Tungsten-substituted vanadium oxide breathes fresh air into catalyst technology
Tokyo, Japan - Researchers from Tokyo Metropolitan University have created a new tungsten-substituted vanadium oxide catalyst for breaking down harmful nitrogen oxides in industrial exhaust. Their new catalyst material works at lower temperatures and does not suffer major drops in performance when processing ''wet'' exhaust, resolving a major drawback in conventional vanadium oxide catalysts. They found that the unaggregated dispersal of atomic tungsten in the original crystal structure plays a key role in how it functions. (2021-01-26)

Ba7Nb4MoO20-based materials with high oxygen-ion conductivity opening sustainable future
Scientists at Tokyo Institute of Technology , Imperial and High Energy Accelerator Research Organization (KEK) Institute of Materials Structure Science, discover new Ba7Nb4MoO20-based materials with high oxygen-ion (oxide-ion O2-) conductivities--''the hexagonal perovskite-related oxides''--and shed light on the underlying mechanisms responsible for their conductivity. Their findings lead the way to uncovering other similar materials, furthering research on developing low-cost and scalable renewable energy technologies. (2021-01-25)

Brain cell network supplies neurons with energy
Until recently, oligodendrocytes were primarily thought to be a kind of cellular insulating tape that accelerates the transmission of electrical signals in the brain. A study by the University of Bonn (Germany) now shows that they are also important for the energy supply of neurons in some brain regions. The findings are published in the journal Cell Reports. (2021-01-19)

Scientists' discovery is paving the way for novel ultrafast quantum computers
Scientists at the Institute of Physics of the University of Tartu have found a way to develop optical quantum computers of a new type. Central to the discovery are rare earth ions that have certain characteristics and can act as quantum bits. These would give quantum computers ultrafast computation speed and better reliability compared to earlier solutions. The University of Tartu researchers Vladimir Hizhnyakov, Vadim Boltrushko, Helle Kaasik and Yurii Orlovskii published the results of their research in the scientific journal Optics Communications. (2021-01-15)

Error protected quantum bits entangled
For the first time, physicists from the University of Innsbruck have entangled two quantum bits distributed over several quantum objects and successfully transmitted their quantum properties. This marks an important milestone in the development of fault-tolerant quantum computers. The researchers published their report in Nature. (2021-01-13)

Can sodium-ion batteries replace trusty lithium-ion ones?
Sodium-ion batteries are a potential replacement for lithium batteries, but different anodes are needed for the same level of performance. Amorphous carbon is known to be a useful anode, because it has defects and voids that can be used to store sodium ions. Nitrogen/phosphorus-doped carbon also offers appealing electrical properties. In Applied Physics Reviews, researchers describe how they applied basic physical concepts of atomic scale to build high-performance anodes for sodium-ion batteries. (2021-01-12)

Enlightening dark ions
Every field has its underlying principles. For economics it's the rational actor; biology has the theory of evolution; modern geology rests on the bedrock of plate tectonics. (2021-01-12)

Construction of carbon-based cell-like-spheres for robust potassium anode
Inspired by the structure of a biological cell, biomimetic carbon cells (BCCs) were synthesized and used as potassium ion batteries (PIBs) anodes. The unique structural characteristics of the BCCs resulted in PIBs that showed a high reversible capacity, excellent cycle stability and rate performance. The present strategy provides a new way for the design and manufacture of new biomimetic battery materials in the future, and promotes collaborative research across multiple disciplines. (2021-01-09)

Nanocrystals that eradicate bacteria biofilm
POSTECH-UNIST joint research team finds ways to control the surface texture of nanostructures. (2021-01-08)

2D CaCl crystals with +1 calcium ions displaying unexpected metallicity and ferromagnetism
Counter to conventional wisdom that the only valence state of Ca ions under ambient conditions is +2 and corresponding crystals are insulating and nonferromagnetic, scientists in China made exciting discoveries of two-dimensional CaCl crystals with +1 calcium ions, which have unexpected metallicity, room-temperature ferromagnetism, heterojunction, piezoelectricity-like property, and distinct hydrogen storage and release capability, showing great potential applications of such abnormal material in designing novel electric and magnetic devices with a size down to atomic scale. (2021-01-05)

Bionic idea boosts lithium-ion extraction
Chinese researchers from Prof. WEN Liping's team at the Technical Institute of Physics and Chemistry and Prof. ZHANG Qianfan's team from Beihang University have recently made progress in the preparation and application of a bioinspired material that is capable of achieving controlled ion transport and sieving, especially for lithium-ion extraction. (2020-12-30)

TPU chemists convert plastic bottle waste into insecticide sorbent
Scientists of Tomsk Polytechnic University proposed a method to create a sorbent for imidacloprid insecticide removal from water. The sorbent belongs to metal-organic frameworks, a class of non-conventional materials. The TPU chemists grew such a framework right on polyethylene terephthalate (PET) used to produce regular plastic bottles. The method is quite simple and allows converting used materials into a useful product. The research findings are published in Applied Materials Today academic journal (IF: 8,352; Q1). (2020-12-23)

Turning the heat down: Catalyzing ammonia formation at lower temperatures with ruthenium
Scientists at Tokyo Institute of Technology (Tokyo Tech) report that the metal ruthenium, supported with lanthanide oxyhydrides, can efficiently catalyze the synthesis of ammonia at a much lower temperature than the traditional approach. In their new study, they highlight the advantages of the oxyhydride support and its potential in becoming a feasible catalyst for low-temperature ammonia synthesis in the future. (2020-12-23)

Researchers illuminate neurotransmitter transport using X-ray crystallography and molecular simulations
Scientists from the MIPT Research Center for Molecular Mechanisms of Aging and Age-Related Diseases have joined forces with their colleagues from Jülich Research Center, Germany, and uncovered how sodium ions drive glutamate transport in the central nervous system. Glutamate is the most important excitatory neurotransmitter and is actively removed from the synaptic cleft between neurons by specialized transport proteins called excitatory amino acid transporters (EAATs). (2020-12-21)

Simple and cost-effective extraction of rare metals from industrial waste
Researchers from Kanazawa University developed a protocol to efficiently purify palladium and silver ions from industrial waste, and convert the ions into pure metallic elements. This will help increase global stock of valuable elements that are widely needed yet in scarce supply. (2020-12-18)

Compressive fluctuations heat ions in space plasma
New simulations carried out in part on the ATERUI II supercomputer in Japan have found that the reason ions exist at higher temperatures than electrons in space plasma is because they are better able to absorb energy from compressive turbulent fluctuations in the plasma. These finding have important implications for understanding observations of various astronomical objects such as the images of the accretion disk and shadow of the M87 supermassive black hole. (2020-12-18)

One's trash, another's treasure: fertilizer made from urine could enable space agriculture
From the perspective of future societies, in extremely closed environments such as a space station, self-sufficiency in food cultivation and waste management is critical. However, the technology to achieve this is still lacking. In a new study, scientists from Japan shed light on their most recent breakthrough: a cheap and efficient method to make liquid fertilizer (ammonia) from simplified artificial urine, serving an ideal dual purpose of growing food and treating waste. (2020-12-14)

Tiny bubbles on electrodes key to speeding up chemical processes
New Curtin University-led research has shown the formation of bubbles on electrodes, usually thought to be a hindrance, can be beneficial, with deliberately added bubbles, or oil droplets, able to accelerate processes such as the removal of pollutants such as hydrocarbons from contaminated water and the production of chlorine. (2020-12-10)

Magnesium contact ions stabilize the macromolecular structure of transfer RNA
In cells transfer RNA (tRNA) translates genetic information from the encoding messenger RNA (mRNA) for protein synthesis. New results from ultrafast spectroscopy and in-depth theoretical calculations demonstrate that the complex folded structure of tRNA is stabilized by magnesium ions in direct contact with phosphate groups at the RNA surface. (2020-12-09)

Multiple semiconductor type switching to boost thermoelectric conversion of waste heat
Scientists at Tokyo Tech demonstrate double charge carrier type switching of tin SnSe semiconductor by doping of antimony Sb. The SnSe carrier type switches from p-type to n-type, and re-switches to p-type as doping increases, due to the switching of major Sb substitution site from Se to Sn, promising reliable charge polarity control, leading to realization of SnSe-based p/n homojunction thermoelectric device for converting waste heat into electricity and new insights on impurity doping of compound semiconductors. (2020-12-09)

Batteries mimic mammal bones for stability
Sodium-ion batteries offer several advantages over lithium-ion batteries; however, it is difficult to develop sodium cathodes, materials through which electrons can enter a battery. Many candidate materials are unstable or cannot withstand high voltages. To find a solution, researchers turned to nature. They created a porous system of NVP structures, surrounded by a dense shell of reduced graphene oxide. They describe the mammal bone-inspired sodium cathode in the journal Applied Physics Reviews. (2020-12-08)

A colossal step for electronics
Scientists at Osaka University have created a thin-film resistor with a conductivity that can be controlled by exposing it to hydrogen and an external electric field. This work may lead to new gas sensors, as well as advanced materials that can dynamically respond to changes in the environment. (2020-12-08)

Scientists get the lowdown on sun's super-hot atmosphere
Images of the sun captured by the IRIS mission show new details of how low-lying loops of plasma are energized, and may also reveal how the hot corona is created. (2020-12-07)

Ionic defect landscape in perovskite solar cells revealed
Joint research work between Chemnitz University of Technology and Technische Universität Dresden under Chemnitz leadership reveals ionic defect landscape in metal halide perovskites -- publication in renowned journal Nature Communications (2020-12-04)

Battery of tests: Scientists figure out how to track what happens inside batteries
The new method could be the key to designing more efficient batteries for specific uses, like electric cars and airplanes. (2020-12-03)

Ultrasensitive transistor for herbicide detection in water
University of Tokyo researchers have fabricated a tiny electronic sensor that can detect very low levels of a commonly used weed killer in drinking water. (2020-12-01)

On-chip erbium-doped lithium niobate microcavity laser
Researchers developed a 1-mol% erbium-doped LN crystal and its LNOI on the silicon substrate, and fabricated an erbium-doped LNOI microdisk with a high quality factor (~1.05x10^5). C-band laser emission at ~1530 nm and ~1560 nm (linewidth 0.12 nm) from the high-Q erbium-doped LNOI microdisk was demonstrated with 974 nm and 1460 nm pumping, with the latter having better thermal stability. (2020-11-30)

Laboratory experiments unravelling the mystery of the Mars moon Phobos
There is no weather in space - but there is weathering: Celestial bodies are bombarded by high energy particles. On the Mars moon Phobos, the situation is complicated: It is hit by particles from the sun, but it is partly shielded by Mars. New experiments explain what is going on, in 2024 a space mission will reach Phobos and check the results. (2020-11-30)

Pyroclasts protect the paintings of Pompeii buried but damage them when they are unearthed
A study conducted by the UPV/EHU's IBeA group shows that pyroclasts may be putting the conservation of the paintings of Pompeii at risk. Specifically, the ions leached from these materials and the underground ion-rich waters from the volcanic rocks may be causing the salts in the paintings to crystallise. In addition, the use of fluorine as a marker is proposed to monitor in situ the extent of the damage sustained by the murals. (2020-11-30)

Page 1 of 25 | 1000 Results
   First   Previous   Next      Last is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to