Current Metallic Glass News and Events

Current Metallic Glass News and Events, Metallic Glass News Articles.
Sort By: Most Relevant | Most Viewed
Page 1 of 25 | 1000 Results
Seeing stable topology using instabilities
The researchers explore how topological phases of light in nonlinear optical media undergo the process of modulational instability. (2021-02-19)

Swimming upstream on sound waves
ETH researchers are among the first scientists to have succeeded in propelling microvehicles against a fluid flow using ultrasound. In future, these tiny vehicles are set to be introduced into the human bloodstream, thereby revolutionising the field of medicine. (2021-02-19)

A comparative study of surface hardness between two bioceramic materials
This study aimed to evaluate the setting behaviour of MTA Angelus and NeoMTA by comparing their hardness after placing them in dry and moist conditions. (2021-02-16)

Object transparency reduces human perception of three-dimensional shapes
Toyohashi University of Technology discovered that when people judge the thickness of an object, objects with glass-like transparent optical properties are perceived to be flatter than they actually are. This discover may be useful for everyday applications, such as devices to assist with walking in people with low-vision or autonomous driving. (2021-02-10)

Porous materials unfavorable for coronavirus survival
As COVID-19 spreads via respiratory droplets, researchers have become increasingly interested in the drying of droplets on impermeable and porous surfaces; surfaces that accelerate evaporation can decelerate the spread of the virus. In Physics of Fluids, researchers show a droplet remains liquid for a much shorter time on a porous surface, making it less favorable to survival of the virus. On paper and cloth, the virus survived for only three hours and two days, respectively. (2021-02-09)

Scientists create armour for fragile quantum technology
An ANU-led international team has invented the equivalent of 'body armour' for extremely fragile quantum systems, which will make them robust enough to be used as the basis for a new generation of low-energy electronics. (2021-02-08)

'Magnetic graphene' forms a new kind of magnetism
Researchers have identified a new form of magnetism in so-called magnetic graphene, which could point the way toward understanding superconductivity in this unusual type of material. (2021-02-08)

Non-metallic electronic regulation in CuCo oxy-/thio-spinel as OER electrocatalysts
Researchers successfully prepared oxy-spinel of Cu1-xCo2+xO4 nanaoflakes and thio-spinel of Cu1-xCo2+xS4 nanospheres by a facile hydrothermal method. The resulting Cu1-xCo2+xO4 exhibits higher catalytic performances toward OER in alkaline media than Cu1-xCo2+xS4 for water oxidation. Experimentally and theoretically, the superior OER catalytic activity of Cu1-xCo2+xO4 nanoflakes mainly depends on the strongly-electronegativity of oxygen element in spinel structure, which determines the higher valence state of Co active sites in CuCo oxyspinel. (2021-02-01)

Islands without structure inside metal alloys could lead to tougher materials
An international team of researchers produced islands of amorphous, non-crystalline material inside a class of new metal alloys known as high-entropy alloys. This discovery opens the door to applications in everything from landing gears, to pipelines, to automobiles. The new materials could make these lighter, safer, and more energy efficient. (2021-01-29)

Titanium oxide nanotubes facilitate low-cost laser-assisted photoporation
Toyohashi University of Technology developed a nanosecond pulse laser-assisted photoporation method using titanium-oxide nanotubes (TNTs) for highly efficient and low-cost intracellular delivery. HeLa - human cervical cancer cells were cultured in the nanotubes and submerged in a solution of biomolecules. After cells were exposed to nanosecond pulse laser, we successfully delivered propidium iodide (PI) and fluorescent dextran into cells with high efficiency and cell viability. (2021-01-25)

Photocatalytic reaction in the shadow
Photoelectrochemical water splitting is a promising technology to convert solar energy into value-added fuels. Theoretically, silicon-based metal-insulator-semiconductor (MIS) photocathode can achieve high efficiency. However, the parasitic light absorption caused by catalysts and metals, as well as the lack of metals to form a large band-offset with p-Si, severely limit their performances. Scientists based in China have demonstrated an illumination-reaction decoupled MIS photocathode using n-Si to prevent the parasitic light absorption while establishing a large band-offset. (2021-01-25)

How does incident solar radiation affect urban canyons?
Toyohashi University of Technology proposed a numerical bead model to predict the upward-to-downward reflection ratio of glass bead retro-reflective (RR) material purposed for urban heat island (UHI) mitigation and reducing energy consumption. These results will contribute to existing research on the absorption or reflection of solar radiation to improve urban thermal and lighting conditions, and to reduce building energy consumption. (2021-01-25)

New technique builds super-hard metals from nanoparticles
Brown University researchers have shown a way to make bulk metals by smashing tiny metal nanoparticles together, which allows for customized grain structures and improved mechanical and other properties. (2021-01-22)

Zebra stripes, leopard spots: frozen metal patterns defy conventional metallurgy
''Stripy zebra, spotty leopard...'' Pattern formation and pattern recognition entertains children and scientists alike. Alan Turing's 1950s model explaining patterns in two-substance systems is used by metallurgists to explain microscopic internal stripes and spots. A study out today explains exotic patterns, counter to Turing's theory, forming on the liquid metal gallium, which melts in the hand. The previously ignored surface-solidification phenomenon improves fundamental understanding of liquid-metal alloys, with a potential patterning tool, and advanced applications in future electronics and optics. (2021-01-18)

What stops flows in glassy materials?
Researchers from the Institute of Mechanics of the Chinese Academy of Sciences and Hong Kong University of Science and Technology recently conducted experimental studies for the first time on glassy systems composed of nonspherical particles. (2021-01-17)

Spreading the sound
Tsukuba University scientists describe the diffusion of sound in disordered materials, such as glass, using a new mathematical model. This work may lead to stronger and cheaper displays for touchscreen devices. (2021-01-15)

Glass frogs living near roaring waterfalls wave hello to attract mates
A University of California, Berkeley, conservationist has discovered that the glass frog Sachatamia orejuela can be added to the list of species that make use of visual cues in response to their acoustic environments. This is the first time a member of the glass frog family (Centrolenidae) has been observed using visual communication in this manner. (2021-01-15)

Conductive nature in crystal structures revealed at magnification of 10 million times
In groundbreaking materials research, a team led by University of Minnesota Professor K. Andre Mkhoyan has made a discovery that blends the best of two sought-after qualities for touchscreens and smart windows--transparency and conductivity. (2021-01-15)

Dual-shot dynamics and ultimate frequency of all-optical magnetic recording on GdFeCo
Achieving ultrafast and energy-efficient optical control of magnetism beyond light's 'diffraction limit' could revolutionize information-processing technology. Towards this goal, researchers led by Xiangping Li at Jinan University and Alexey V. Kimel at Radboud University have determined the fastest possible rate of the optical reversal of magnetization of up to 3?GHz, and proposed a method to achieve data recording at scales below light's 'diffraction limit', which is generally believed to restrict the attainable resolution. (2021-01-14)

Evolution in a test tube: these bacteria survive on deadly copper surfaces
The descendants of regular wild-type bacteria can evolve to survive for a long time on metallic copper surfaces that would usually kill them within a few minutes. An international research team led by Martin Luther University Halle-Wittenberg (MLU) and the Bundeswehr Institute of Microbiology was able to produce these tiny survivalists in the lab and has been able to study them more closely. The team reports on its findings in Applied and Environmental Microbiology. (2021-01-13)

Fossils' soft tissues helping to solve puzzle that vexed Darwin
Remarkably well-preserved fossils are helping scientists unravel a mystery about the origins of early animals that puzzled Charles Darwin. (2021-01-12)

Scientists have synthesized an unusual superconducting barium superhydride
A new exotic compound, BaH12, has been discovered by experiment and theory. Unusually, it is a molecular metal and demonstrates the superconducting transition around 20?K at 140?GPa (2021-01-12)

Researchers develop laser-based process to 3D print detailed glass objects
Researchers have developed a new laser-based process for 3D printing intricate parts made of glass. With further development, the new method could be useful for making complex optics for vision, imaging, illumination or laser-based applications. (2021-01-12)

Analytical measurements can predict organic solar cell stability
researchers have developed an analytical measurement ''framework'' which could allow organic solar cell researchers and manufacturers to determine which materials will produce the most stable solar cells prior to manufacture. (2021-01-11)

USTC develops ultrahigh-performance plasmonic metal-oxide materials
In a study published in Advanced Materials, the researchers from Hefei National Laboratory for Physical Sciences at the Microscale, the University of Science and Technology of China of the Chinese Academy of Sciences, using an electron-proton co-doping strategy, invented a new metal-like semiconductor material with excellent plasmonic resonance performance. (2021-01-08)

Researchers turn coal powder into graphite in microwave oven
The University of Wyoming team created an environment in a microwave oven to successfully convert raw coal powder into nano-graphite, which is used as a lubricant and in items ranging from fire extinguishers to lithium ion batteries. (2021-01-06)

Neither liquid nor solid
Discovery of liquid glass sheds light on the old scientific problem of the glass transition: An interdisciplinary team of researchers from the University of Konstanz has uncovered a new state of matter, liquid glass, with previously unknown structural elements - new insights into the nature of glass and its transitions. (2021-01-05)

2D CaCl crystals with +1 calcium ions displaying unexpected metallicity and ferromagnetism
Counter to conventional wisdom that the only valence state of Ca ions under ambient conditions is +2 and corresponding crystals are insulating and nonferromagnetic, scientists in China made exciting discoveries of two-dimensional CaCl crystals with +1 calcium ions, which have unexpected metallicity, room-temperature ferromagnetism, heterojunction, piezoelectricity-like property, and distinct hydrogen storage and release capability, showing great potential applications of such abnormal material in designing novel electric and magnetic devices with a size down to atomic scale. (2021-01-05)

Controlling cardiac waves with light to better understand abnormally rapid heart rhythms
Over 300,000 people die each year in the US due to sudden cardiac death. In many cases, sudden cardiac death is caused by abnormally rapid heart rhythms called tachycardias, which means the heart cannot pump adequate blood to the body. In Chaos, researchers use mice to study tachycardias and find there are intrinsic mechanisms that exist in heart tissue that they hypothesize lead to the self-termination of rapid cardiac rhythm. (2020-12-22)

Scientists suggested a method to improve performance of methanol fuel cells
Fuel cells based on methanol oxidation have a huge potential in the motor and technical industries. To increase their energy performance, scientists suggest using electrodes made of thin palladium-based metallic glass films. A group of researchers from Far Eastern Federal University (FEFU), Austria, Turkey, Switzerland, and the UK has developed a new metallic glass for this application. The results were reported in the Nanoscale journal. (2020-12-22)

Putting on the pressure improves glass for fiber optics
Rapid, accurate communication worldwide is possible via fiber optic cables, but as good as they are, they are not perfect. Now, researchers from Penn State and AGC Inc. in Japan suggest that the silica glass used for these cables would have less signal loss if it were manufactured under high pressure. (2020-12-22)

Simple and cost-effective extraction of rare metals from industrial waste
Researchers from Kanazawa University developed a protocol to efficiently purify palladium and silver ions from industrial waste, and convert the ions into pure metallic elements. This will help increase global stock of valuable elements that are widely needed yet in scarce supply. (2020-12-18)

Physicists solve geometrical puzzle in electromagnetism
A team of scientists have solved the longstanding problem of how electrons move together as a group inside cylindrical nanoparticles. (2020-12-16)

Turning sweat against itself with a metal-free antiperspirant
Body odor is an unpleasant smell, produced when bacteria living on the skin break down the proteins in sweat. To avoid stinking, some people apply antiperspirants that clog sweat ducts with foreign materials, such as metals, to slow perspiration. As a step toward a more natural solution, researchers reporting in ACS Applied Materials & Interfaces have turned sweat against itself using an evaporation-based approach in which the salts in sweat create a gel-like plug. (2020-12-16)

What lessons can medicine learn from Father Christmas?
As Father Christmas gears up for the busiest 24 hours of his year, what skills does he use to get a seemingly impossible job done effectively and safely - and can they be applied to medicine? (2020-12-16)

Quantum mysteries: Probing an unusual state in the superconductor-insulator transition
Scientists at Tokyo Institute of Technology approach the two decade-old mystery of why an anomalous metallic state appears in the superconductor-insulator transition in 2D superconductors. Through experimental measurements of a thermoelectric effect, they found that the ''quantum liquid state'' of quantum vortices causes the anomalous metallic state. The results clarify the nature of the transition and could help in the design of superconducting devices for quantum computers. (2020-12-14)

Trapping nanoparticles with optical tweezers
In new research published in EPJ E, Janine Emile and Olivier Emile at the University of Rennes, France, demonstrate a novel tweezer design, which enabled them to trap fluorescent particles just 200 nanometres across for the first time. (2020-12-11)

A theory as clear as glass
Scientists at The University of Tokyo ran molecular dynamics simulations to compose a more complete theory of the factors that drive crystallization instead of glass formation. They found that tiny changes in material composition can frustrate crystal growth, leading to vitrification. This work may lead to advances in the field of industrial glassmaking. (2020-12-11)

Within a hair's breadth--forensic identification of single dyed hair strand now possible
A single strand of hair in a crime scene contains many clues that can help identify a perpetrator. In a recent study, scientists at Tokyo University of Science, Japan, have combined two modern techniques, called surface-enhanced Raman spectroscopy and X-ray fluorescence, to distinguish between different colors in individual hair strands. Both these techniques are almost non-destructive and can be conducted with portable devices, making this a promising way to get supportive evidence in forensic investigations. (2020-12-09)

A standout superalloy
In recent years, it has become possible to use laser beams and electron beams to ''print'' engineering objects with complex shapes that could not be achieved by conventional manufacturing. The additive manufacturing (AM) process, or 3D printing, for metallic materials involves melting and fusing fine-scale powder particles -- each about 10 times finer than a grain of beach sand -- in sub-millimeter-scale ''pools'' created by focusing a laser or electron beam on the material. (2020-12-08)

Page 1 of 25 | 1000 Results
   First   Previous   Next      Last   
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.