Current Nanoscale News and Events

Current Nanoscale News and Events, Nanoscale News Articles.
Sort By: Most Relevant | Most Viewed
Page 1 of 25 | 1000 Results
Concept for a new storage medium
Physicists from Switzerland, Germany and Ukraine have proposed an innovative new data storage medium. The technique is based on specific properties of antiferromagnetic materials that had previously resisted experimental examination. (2021-02-22)

Imaging technique provides link to innovative products
A study led by University of Georgia researchers announces the successful use of a new nanoimaging technique that will allow researchers to test and identify two-dimensional materials (2021-02-04)

Switching nanolight on and off
The report demonstrates a new method to control the flow of light of nanolight. Optical manipulation on the nanoscale, or nanophotonics, has become a critical area of interest as researchers seek ways to meet the increasing demand for technologies that go well beyond what is possible with conventional photonics and electronics. (2021-02-04)

Electrons caught in the act
Tsukuba University scientists create movies of the ultrafast motion of electrons traveling through an organic semiconductor with atomic-level resolution. This work may lead to more powerful and miniaturized smart devices. (2021-01-21)

Curtin find could slash energy use and cost in making silicon
Curtin University researchers have uncovered a method of making silicon, found commonly in electronics such as phones, cameras and computers, at room temperature. (2021-01-20)

How drain flies dodge a washout
Shower spray is like water off a duck's back to bathroom flies. (2021-01-19)

Research breaks new ground in understanding how a molecular motor generates force
A team of biophysicists set out to tackle the long-standing question about the nature of force generation by myosin, the molecular motor responsible for muscle contraction. The key question they addressed - one of the most controversial topics in the field - was: how does myosin convert chemical energy, in the form of ATP, into mechanical work? The answer revealed new details into how myosin, the engine of muscle and related motor proteins, transduces energy. (2021-01-14)

Pivotal discovery in quantum and classical information processing
Researchers have achieved, for the first time, electronically adjustable interactions between microwaves and a phenomenon in certain magnetic materials called spin waves. This could have application in quantum and classical information processing. (2021-01-13)

Cracking the code of a shapeshifting protein
A shapeshifting immune system protein called XCL1 evolved from a single-shape ancestor hundreds of millions of years ago. Now, researchers at the Medical College of Wisconsin (MCW) discovered the molecular basis for how this happened. In the process they uncovered principles that scientists can use to design purpose-built nanoscale transformers for use as biosensors, components of molecular machines, and even therapeutics. (2021-01-11)

High-speed atomic force microscopy visualizes cell protein factories
Factor-pooling by ribosomes caught on video using state-of-art high-speed atomic force microscopy technology. (2021-01-08)

NIST publishes a beginner's guide to DNA origami
Jacob Majikes and Alex Liddle, researchers at the National Institute of Standards and Technology (NIST) who have studied DNA origami for years, have compiled the first detailed tutorial on the technique. (2021-01-08)

Better together: Scientists discover applications of nanoparticles with multiple elements
As catalysts for fuel cells, batteries and processes for carbon dioxide reduction, alloy nanoparticles that are made up of five or more elements are shown to be more stable and durable than single-element nanoparticles. (2021-01-04)

Controlling the nanoscale structure of membranes is key for clean water, researchers find
A desalination membrane acts as a filter for salty water: push the water through the membrane, get clean water suitable for agriculture, energy production and even drinking. The process seems simple enough, but it contains complex intricacies that have baffled scientists for decades -- until now. Researchers from Penn State, The University of Texas at Austin, Iowa State University, Dow Chemical Company and DuPont Water Solutions published a key finding in understanding how membranes actually filter minerals from water, online today (Dec. 31) in Science. (2020-12-31)

Desalination breakthrough could lead to cheaper water filtration
Producing clean water at a lower cost could be on the horizon after researchers from The University of Texas at Austin and Penn State solved a complex problem that has baffled scientists for decades, until now. (2020-12-31)

Theory describes quantum phenomenon in nanomaterials
Theoretical physicists Yoshimichi Teratani and Akira Oguri of Osaka City University, and Rui Sakano of the University of Tokyo have developed mathematical formulas that describe a physical phenomenon happening within quantum dots and other nanosized materials. The formulas, published in the journal Physical Review Letters, could be applied to further theoretical research about the physics of quantum dots, ultra-cold atomic gasses, and quarks. (2020-12-23)

New electron microscopy technique offers first look at previously hidden processes
Northwestern researchers have developed a new microscopy method that allows scientists to see the building blocks of 'smart' materials being formed at the nanoscale. (2020-12-22)

Goldilocks and the three quantum dots: Just right for peak solar panel performance
Maximizing the efficiency of renewable energy technology is dependent on creating nanoparticles with ideal dimensions and density, new simulations have shown. (2020-12-20)

Physicists solve geometrical puzzle in electromagnetism
A team of scientists have solved the longstanding problem of how electrons move together as a group inside cylindrical nanoparticles. (2020-12-16)

Researchers develop Si-based super-high frequency nanoelectromechanical resonator
Recently, a group led by Prof. GUO Guoping from the University of Science and Technology of China of the Chinese Academy of Sciences, collaborating with Prof. ZHANG Zhen's group from Uppsala University, Sweden, designed and fabricated CMOS-compatible suspended SHT devices which worked as super-high frequency nanoelectromechanical resonators. The work was published in Advanced Materials. (2020-12-15)

Trapping nanoparticles with optical tweezers
In new research published in EPJ E, Janine Emile and Olivier Emile at the University of Rennes, France, demonstrate a novel tweezer design, which enabled them to trap fluorescent particles just 200 nanometres across for the first time. (2020-12-11)

Discovery suggests new promise for nonsilicon computer transistors
An alloy material called InGaAs could be suitable for high-performance computer transistors, according to MIT researchers. If operated at high-frequencies, InGaAs transistors could one day rival those made of silicon. (2020-12-09)

Research identifies nanoscale effect of water and mineral content on bone
Researchers conducted the first study of the effect of water and mineral content on collagen fibrils, the essence of bone material, which will aid the development of synthetic materials to mimic bone. (2020-12-03)

Tunable rainbow light trapping in ultrathin resonator arrays
Light squeezed into nanoscale metallic gaps has a myriad of applications in sensing, energy, and nonlinear optics. Recently, scientists at the University of Toronto have developed a new paradigm for the design of ultrathin metallic nanostructures which allows for precision tailoring to fit any desired application. This design strategy, coupled with a novel fabrication technique, provides a promising platform for the advancement of nanoscale optics. (2020-12-01)

Nanoscopic barcodes set a new science limit
The University of Technology Sydney (UTS) led collaboration developed a nanocrystal growth method that controls the growth direction, producing programmable atomic thin layers, arbitrary barcoded nanorods, with morphology uniformity. The result is millions of different kinds of nanobarcodes that can form a 'library' for future nanoscale sensing applications. (2020-11-30)

Sustainable regenerated isotropic wood
A high-performance sustainable regenerated isotropic wood (RGI-wood) is reported, constructed from surface nanocrystallized wood particles (SNWP) by efficient bottom-up strategy. The obtained RGI-wood exceeds the limitation of the anisotropic, inconsistent mechanical properties, and inflammability of natural wood. Mass production of large-sized RGI-wood was achieved, overcoming the rareness of large-sized natural wood. Through this strategy, a series of functional RGI-wood nanocomposites can also be prepared, which show great potential in diverse applications. (2020-11-30)

Magnetic vortices come full circle
The first experimental observation of three-dimensional magnetic 'vortex rings' provides fundamental insight into intricate nanoscale structures inside bulk magnets, and offers fresh perspectives for magnetic devices. (2020-11-30)

Staying ahead of the curve with 3D curved graphene
A team of researchers has amplified 3D graphene's electrical properties by controlling its curvature. (2020-11-20)

Mastering the art of nanoscale construction to breathe easy and bust fraud
An innovative approach to nanoscale assembly has been successfully demonstrated, with the accuracy, scalability and control required to offer new tools for chemical sensing and anti-counterfeiting. The mechanism, which relies on electrophoretic deposition, could also positively impact renewable energy and optoelectronics. (2020-11-17)

Researchers trap electrons to create elusive crystal
Now, a Cornell-led collaboration has developed a way to stack two-dimensional semiconductors and trap electrons in a repeating pattern that forms a specific and long-hypothesized crystal. (2020-11-11)

Making 3D nanosuperconductors with DNA
A platform for making 3D superconducting nano-architectures with a prescribed organization could find application in quantum computing and sensing. (2020-11-10)

Germanium telluride's hidden properties at the nanoscale revealed
Germanium Telluride is an interesting candidate material for spintronic devices. In a comprehensive study at BESSY II, a Helmholtz-RSF Joint Research Group has now revealed how the spin texture switches by ferroelectric polarization within individual nanodomains. (2020-11-06)

100,000-fold enhancement in the nonlinearity of Si
Scientists at Osaka University show how to achieve a very strong nonlinear optical response in silicon nanostructures based on the photothermal effect. This work may lead to entirely optical control of logic gates in computers. (2020-11-03)

FSU researchers investigate material properties for longer-lasting, more efficient solar cells
FSU researchers are helping to understand the fundamental processes in a material known as perovskites, work that could lead to more efficient solar cells that also do a better job of resisting degradation. (2020-10-26)

Do the twist: Making two-dimensional quantum materials using curved surfaces
Scientists at the University of Wisconsin-Madison have discovered a way to control the growth of twisting, microscopic spirals of materials just one atom thick. The continuously twisting stacks of two-dimensional materials built by a team led by UW-Madison chemistry Professor Song Jin create new properties that scientists can exploit to study quantum physics on the nanoscale. (2020-10-22)

Future VR could employ new ultrahigh-res display
Repurposed solar panel research could be the foundation for a new ultrahigh-resolution microdisplay. The OLED display would feature brighter images with purer colors and more than 10,000 pixels per inch. (2020-10-22)

Asymmetric optical camouflage: Tuneable reflective color accompanied by optical Janus effect
Deliverying viewing-direction sensitive information display across single sheet of transreflective window is introduced. Based on the experimental verification of theoretical modelling, scientists in Republic of Korea invented colour tuneable optical device that displays different colours and messages depending on viewing direction which is completely new and exotic optical phenomenon. A step further, they realized asymmetric information encryption via colour matching across the distinct colour boundary. (2020-10-20)

Ultra-sensitive nanothermometer under ambient conditions
Nanoscale temperature measurement with high sensitivity is important to studying many phenomena ranging from heat dissipation in nanocircuits to thermal processes in live systems. The most sensitive nanothermometer working under ambient conditions is demonstrated by hybridizing the critical magnetism of magnetic nanoparticles and the ultra-sensitive diamond-based magnetometer. The sensitivity of the hybrid nanothermometer is as high as 76 uK/sqrt(Hz). The ultra-sensitive nanothermometer offers a new tool to investigate thermal processes in nanoscale systems. (2020-10-14)

New virtual reality software allows scientists to 'walk' inside cells
Virtual reality software which allows researchers to 'walk' inside and analyze individual cells could be used to understand fundamental problems in biology and develop new treatments for disease. (2020-10-12)

New brain cell-like nanodevices work together to identify mutations in viruses
In the September issue of the journal Nature, scientists from Texas A&M University, Hewlett Packard Labs and Stanford University have described a new nanodevice that acts almost identically to a brain cell. Furthermore, they have shown that these synthetic brain cells can be joined together to form intricate networks that can then solve problems in a brain-like manner. (2020-09-23)

Great progress for electronic gadgets of the future
A new discovery is an important step towards smaller, more advanced electronics. And maybe more environmentally friendly gadgets, too. (2020-09-16)

Page 1 of 25 | 1000 Results
   First   Previous   Next      Last   
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.