Current Neutrons News and Events

Current Neutrons News and Events, Neutrons News Articles.
Sort By: Most Relevant | Most Viewed
Page 1 of 17 | 660 Results
Charge radii of exotic potassium isotopes challenge nuclear structure theory
In nuclear physics so-called magic number are such nuclear proton and/or neutron numbers, for which the nucleus is more stable compared to neighboring isotopes on the nuclear chart. An international research team studied the nuclear charge radii of potassium isotopes. Isotopes were studied by using the collinear resonance ionization spectroscopy technique. The results indicated that the potassium isotope with a neutron number of 32 does not conform with criteria of magic neutron number. The results were published in Nature Physics journal. (2021-02-04)

Solving complex physics problems at lightning speed
A calculation so complex that it takes twenty years to complete on a powerful desktop computer can now be done in one hour on a regular laptop. Physicist Andreas Ekström at Chalmers University of Technology, together with international research colleagues, has designed a new method to calculate the properties of atomic nuclei incredibly quickly. (2021-02-01)

Change of course on the journey to the island of stability
An international research team succeeded in gaining new insights into the artificially produced superheavy element flerovium, element 114, at the accelerator facilities of the GSI Helmholtzzentrum für Schwerionenforschung in Darmstadt, Germany. Under the leadership of Lund University in Sweden and with significant participation of Johannes Gutenberg University Mainz (JGU) as well as the Helmholtz Institute Mainz (HIM) in Germany and other partners, flerovium was produced and investigated to determine whether it has a closed proton shell. (2021-01-26)

Nuclear physicist's voyage towards a mythical island
Theories were introduced as far back as the 1960s about the possible existence of superheavy elements. Their most long-lived atomic nuclei could give rise to a so-called ''island of stability'' far beyond the element uranium. However, a new study, led by nuclear physicists at Lund University, shows that a 50-year-old nuclear physics manifesto must now be revised. (2021-01-26)

Alpha particles lurk at the surface of neutron-rich nuclei
Scientists from an international collaboration have found evidence of alpha particles at the surface of neutron-rich heavy nuclei, providing new insights into the structure of neutron stars, as well as the process of alpha decay. (2021-01-21)

Limits of atomic nuclei predicted
Novel calculations have enabled the study of nearly 700 isotopes between helium and iron, showing which nuclei can exist and which cannot. In an article published in Physical Review Letters, scientists from TU Darmstadt, the University of Washington, the Canadian laboratory TRIUMF, and the University of Mainz report how they simulated for the first time using innovative theoretical methods a large region of the chart of nuclides based on the theory of the strong interaction. (2021-01-13)

The map of nuclear deformation takes the form of a mountain landscape
Until recently, scientists believed that only very massive nuclei could have excited zero-spin states of increased stability with a significantly deformed shape. Meanwhile, an international team of researchers from Romania, France, Italy, the USA and Poland showed in their latest article that such states also exist in much lighter nickel nuclei. Positive verification of the theoretical model used in these experiments allows describing the properties of nuclei unavailable in Earth laboratories. (2020-12-30)

Characterising cold fusion in 2D models
Through a study published in EPJ D, researchers show theoretically how cold fusion driven by muon capture would unfold within 2D systems, without any need for approximations. (2020-12-16)

Breakthrough in nuclear physics
The positively charged protons in atomic nuclei should actually repel each other, and yet even heavy nuclei with many protons and neutrons stick together. The so-called strong interaction is responsible for this. Prof. Laura Fabbietti and her research group at the Technical University of Munich (TUM) have now developed a method to precisely measure the strong interaction utilizing particle collisions in the ALICE experiment at CERN in Geneva. (2020-12-09)

Titanium atom that exists in two places at once in crystal to blame for unusual phenomenon
Bombarding a crystal with neutrons reveals a quantum quirk that frustrates heat transfer. (2020-12-03)

Supernova surprise creates elemental mystery
Michigan State University (MSU) researchers have discovered that one of the most important reactions in the universe can get a huge and unexpected boost inside exploding stars known as supernovae. (2020-12-02)

Surrey helps to produce the world's first neutron-rich, radioactive tantalum ions
An international team of scientists have unveiled the world's first production of a purified beam of neutron-rich, radioactive tantalum ions. (2020-11-10)

No matter the size of a nuclear party, some protons and neutrons will pair up and dance
No matter the size of a nuclear party, certain protons and neutrons will always pair up and dance, a new MIT study finds. The results will help map the workings within neutron stars and heavy radioactive nuclei. (2020-11-09)

Story tips: Ice breaker data, bacterial breakdown, catching heat and finding order
ORNL story tips: Ice breaker data, bacterial breakdown, catching heat and finding order (2020-11-05)

Smart bottle brushes
They look like microscopic bottle brushes: Polymers with a backbone and tufts of side arms. This molecular design gives them unusual abilities: For example, they can bind active agents and release them again when the temperature changes. With the help of neutrons, a research team from the Technical University of Munich (TUM) has now succeeded to unveil the changes in the internal structure in course of the process. (2020-10-29)

Neutrons chart atomic map of COVID-19's viral replication mechanism
To better understand how the novel coronavirus behaves and how it can be stopped, scientists have completed a three-dimensional map that reveals the location of every atom in an enzyme molecule critical to SARS-CoV-2 reproduction. Researchers at the Department of Energy's Oak Ridge National Laboratory used neutron scattering to identify key information to improve the effectiveness of drug inhibitors designed to block the virus's replication mechanism. (2020-10-27)

The new heavy isotope mendelevium-244 and a puzzling short-lived fission activity
A team of scientists from GSI Helmholtzzentrum fuer Schwerionenforschung Darmstadt, University Mainz (JGU), Helmholtz Institute Mainz (HIM) and the University of Jyvaeskylae, Finland, has provided new insights into the fission processes in exotic nuclei and for this, has produced the hitherto unknown nucleus mendelevium-244. The experiments were part of ''FAIR Phase 0'', the first stage of the FAIR experimental program. The results have now been published in the journal ''Physical Review Letters''. (2020-10-21)

Ultraviolet shines light on origins of the solar system
In the search to discover the origins of our solar system, an international team of researchers, including planetary scientist and cosmochemist James Lyons of Arizona State University, has compared the composition of the sun to the composition of the most ancient materials that formed in our solar system: refractory inclusions in unmetamorphosed meteorites. (2020-10-19)

Perovskite materials: Neutrons show twinning in halide perovskites
Solar cells based on hybrid halide perovskites achieve high efficiencies. These mixed organic-inorganic semiconductors are usually produced as thin films of microcrystals. An investigation with the Laue camera at the neutron source BER II could now clarify that twinning occurs during crystallisation even at room temperature. This insight is helpful for optimising production processes of halide perovskites. (2020-10-13)

UMD researchers develop tools to sharpen 3D view of large RNA molecules
University of Maryland scientists developed a method for generating high resolution 3D images of RNA, overcoming challenges limiting 3D analysis and imaging of RNA to only small molecules and pieces of RNA for the past 50 years. Published in Science Advances, the new method, which expands the scope of nuclear magnetic resonance (NMR) spectroscopy, will enable researchers to understand the shape and structure of RNA molecules and learn how they interact with other molecules. (2020-10-07)

Understanding ghost particle interactions
Argonne scientists were part of a team that constructed a nuclear physics model capturing the interactions between neutrinos and atomic nuclei. This model building is part of a larger project to understand the role of neutrinos in the early universe. (2020-09-28)

Scientists achieve higher precision weak force measurement between protons, neutrons
Through a one-of-a-kind experiment at Oak Ridge National Laboratory, nuclear physicists have precisely measured the weak interaction between protons and neutrons. The result quantifies the weak force theory as predicted by the Standard Model of Particle Physics. (2020-09-24)

'Floppy' atomic dynamics help turn heat into electricity
Materials scientists at Duke University have uncovered an atomic mechanism that makes certain thermoelectric materials such as iron sulfide incredibly efficient near high-temperature phase transitions. The information will help fill critical knowledge gaps in the computational modeling of such materials, potentially allowing researchers to discover new and better options for technologies that rely on transforming heat into electricity. (2020-09-04)

Method proposed for more accurate determinations of neutron star radii
Neutron stars are the smallest and densest astrophysical objects with visible surfaces in the Universe. They form after gravitational collapses of the iron nuclei of massive (with masses about ten solar masses) stars at the end of their nuclear evolution. We can observe these collapses as supernovae explosions. (2020-08-17)

Probing the properties of magnetic quasi-particles
Researchers have for the first time measured a fundamental property of magnets called magnon polarisation -- and in the process, are making progress towards building low-energy devices. (2020-07-28)

New 'super light source' should allow fascinating insights into atoms
The 'Gamma Factory initiative' -- an international team of scientists -- is currently exploring a novel research tool: They propose to develop a source of high-intensity gamma rays using the existing accelerator facilities at CERN. To do this, specialized ion beams will be circulated in the SPS and LHC storage rings, which will then be excited using laser beams so that they emit photons within the gamma radiation range of the electromagnetic spectrum. This is of particular interest in connection with spectroscopic analysis of atomic nuclei. (2020-07-22)

Love-hate relationship of solvent and water leads to better biomass breakup
Scientists at the Department of Energy's Oak Ridge National Laboratory used neutron scattering and supercomputing to better understand how an organic solvent and water work together to break down plant biomass, creating a pathway to significantly improve the production of renewable biofuels and bioproducts. (2020-07-15)

A rapid finger-stick blood test quickly estimates radiation exposure in mice
A new finger-stick test can use a single drop of blood to quickly estimate how much harmful radiation mice have been exposed to, according to a study. (2020-07-15)

Introducing a new isotope: Mendelevium-244
A team of scientists working at Berkeley Lab's 88-Inch Cyclotron has discovered a new form of the human-made element mendelevium. The newly created isotope, mendelevium-244, is the 17th and lightest form of the element, which was first discovered in 1955 by a Berkeley Lab team. (2020-06-23)

Scientists carry out first space-based measurement of neutron lifetime
Scientists have found a way of measuring neutron lifetime from space for the first time -- a discovery that could teach us more about the early universe. (2020-06-11)

Physicists study mirror nuclei for precision theory test
A precision measurement of helium and hydrogen mirror isotopes reveals new questions in understanding of nuclear structure. The research, carried out at the Department of Energy's Thomas Jefferson National Accelerator Facility, was recently published as an editors' suggested read in Physical Review Letters. (2020-06-08)

Finnish researchers have discovered a new type of matter inside neutron stars
A Finnish research group has found strong evidence for the presence of exotic quark matter inside the cores of the largest neutron stars in existence. The conclusion was reached by combining recent results from theoretical particle and nuclear physics to measurements of gravitational waves from neutron star collisions. (2020-06-01)

A single proton can make a heck of a difference
Scientists from the RIKEN Nishina Center for Accelerator-Based Science and collaborators have shown that knocking out a single proton from a fluorine nucleus -- transforming it into a neutron-rich isotope of oxygen -- can have a major effect on the state of the nucleus. (2020-05-28)

Study reveals single-step strategy for recycling used nuclear fuel
A typical nuclear reactor uses only a small fraction of its fuel rod to produce power before the energy-generating reaction naturally terminates. What is left behind is an assortment of radioactive elements, including unused fuel, that are disposed of as nuclear waste in the United States. Although certain elements recycled from waste can be used for powering newer generations of nuclear reactors, extracting leftover fuel in a way that prevents possible misuse is an ongoing challenge. (2020-05-04)

Gravitational waves could prove the existence of the quark-gluon plasma
According to modern particle physics, matter produced when neutron stars merge is so dense that it could exist in a state of dissolved elementary particles. This state of matter, called quark-gluon plasma, might produce a specific signature in gravitational waves. Physicists at Goethe University Frankfurt and the Frankfurt Institute for Advanced Studies have now calculated this process using supercomputers. (2020-04-30)

MSU professor collaborates with international colleagues in Review of Modern Physics journal article
MSU Professor Alexandra Gade collaborated with international colleagues for a Review of Modern Physics article about shell evolution of exotic nuclei. The graphic displays the chart of nuclei, or proton vs. neutron number, and indicates the magic numbers that were shown to change for short-lived nuclei at the fringes of the chart. To understand the production of the elements in the Universe, the properties, including shell structure, of such nuclei have to be understood. (2020-04-22)

New handle for controlling electromagnetic properties could enable spintronic computing
Materials scientists at Duke University have shown the first clear example that a material's transition into a magnet can control instabilities in its crystalline structure that cause it to change from a conductor to an insulator. If researchers can learn to control this unique connection between physical properties identified in hexagonal iron sulfide, it could enable new technologies such as spintronic computing. (2020-04-13)

Heavy iron isotopes leaking from Earth's core
Earth's molten core may be leaking iron, according to researchers who analyzed how iron behaves inside our planet. (2020-04-13)

Condensed matter: Bethe strings experimentally observed
90 years ago, the physicist Hans Bethe postulated that unusual patterns, so-called Bethe strings, appear in certain magnetic solids. Now an international team has succeeded in experimentally detecting such Bethe strings for the first time. They used neutron scattering experiments at various neutron facilities including the unique high-field magnet of BER II at HZB. The experimental data are in excellent agreement with the theoretical prediction of Bethe and prove once again the power of quantum physics. (2020-04-06)

Deep-sea worms and bacteria team up to harvest methane
Scientists uncover an unusual partnership at the bottom of the ocean. (2020-04-03)

Page 1 of 17 | 660 Results
   First   Previous   Next      Last   
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.