Current Polarized Light News and Events

Current Polarized Light News and Events, Polarized Light News Articles.
Sort By: Most Relevant | Most Viewed
Page 1 of 25 | 1000 Results
Seeing stable topology using instabilities
The researchers explore how topological phases of light in nonlinear optical media undergo the process of modulational instability. (2021-02-19)

Engineers place molecule-scale devices in precise orientation
A technique for controlling the orientation of manufactured DNA shapes now removes one of the last barriers for the combination of molecular devices with conventional semiconductor chips. (2021-02-18)

Spin hall effect of light with near 100% efficiency
POSTECH-KAIST joint research team develops perfect SHEL using anisotropic metasurfaces. (2021-02-18)

Cancer research: Targeted elimination of leukemic stem cells
Cancer research in Bern has discovered a further mechanism to combat leukemia: a research team at Inselspital, Bern University Hospital and the University of Bern has succeeded in identifying an important signaling pathway for regulating leukemic stem cells. With this discovery, the researchers are expanding the arsenal of potentially highly effective drugs against leukemia. (2021-02-16)

Observations at a shed light on how hard coral survives without light
French researchers have studied for the first time the distribution of hard corals in the French Polynesian archipelago, from the surface to 120 metres deep. As the amount of light decreases, this coral associates with other filamentous algae, in addition to zooxanthellae, which become inserted into its skeleton. These algae, the only ones found at this depth, could therefore play an important role in the coral's adaptation to life at depth. (2021-02-16)

Researchers find broad impacts from political polarization
Ultimately, polarization harms mental and physical health, financial welfare, relationships and societal interests through its impact on psychology, marketing and public policy outcomes. (2021-02-10)

Origami powered by light
Some man-made materials can mimic plants' slow but steady reaction to light energy, usually triggered by lasers or focused ambient light. New research from the University of Pittsburgh and Carnegie Mellon University has discovered a way to speed up this effect enough that its performance can compete against electrical and pneumatic systems. (2021-02-10)

'Multiplying' light could be key to ultra-powerful optical computers
New type of optical computing could solve highly complex problems that are out of reach for even the most powerful supercomputers. (2021-02-08)

Large-area periodic perovskite nanostructures for lenticular printing laser displays
We fabricated large-area periodic structures with spatial resolution at wavelength scale from hybrid perovskite materials via a space-confined solution growth method. It takes advantages of both high refractive index contrast and high luminescence brightness, which allows the optical modulation on not only the reflection of illumination, but also the light emission from hybrid perovskites. The distributed feedback within these periodic structures significantly improves the degree of polarization and directionality of laser action while its threshold is also reduced. (2021-02-04)

Switching nanolight on and off
The report demonstrates a new method to control the flow of light of nanolight. Optical manipulation on the nanoscale, or nanophotonics, has become a critical area of interest as researchers seek ways to meet the increasing demand for technologies that go well beyond what is possible with conventional photonics and electronics. (2021-02-04)

Imaging the first moments of a body plan emerging in the embryo
Egg cells start out as round blobs. After fertilization, they begin transforming into people, dogs, fish, or other animals by orienting head to tail, back to belly, and left to right. Exactly what sets these body orientation directions has been guessed at but not seen. Now researchers at the Marine Biological Laboratory (MBL) have imaged the very beginning of this cellular rearrangement, and their findings help answer a fundamental question. (2021-02-04)

Dynamic 3D printing process features a light-driven twist
The speed of light has come to 3D printing. Northwestern University engineers have developed a new method that uses light to improve 3D printing speed and precision while also, in combination with a high-precision robot arm, providing the freedom to move, rotate or dilate each layer as the structure is being built. The method introduces the 'on-the-fly' ability to manipulate the original design layer by layer and pivot the printing direction without recreating the model. (2021-02-03)

Air-guiding in solid-core optical waveguides: A solution for on-chip trace gas spectroscopy
We demonstrate an air-suspended waveguide that exhibits exceptional field delocalization and an external field confinement of 107 %, providing a stronger interaction with the surrounding air than a free-space beam. Operating at mid-infrared wavelengths, the waveguide is an ideal building block of next-generation on-chip sensors for sensitive and specific trace gas detection by tunable diode laser absorption spectroscopy (TDLAS). (2021-02-02)

The benefits of reading outdoors
Investigators demonstrate that image luminance has opposite effects on the contrast sensitivity of cortical pathways signaling lights than darks. It impairs luminance discrimination for the brightest stimuli of the scene while improving it for the darkest stimuli, a mechanism that is needed to efficiently sample natural scenes. (2021-02-02)

A new hands-off probe uses light to explore electron behavior in a topological insulator
Topological insulators are one of the most puzzling quantum materials. Their edges are electron superhighways where electrons flow with no loss, while the bulk of the material blocks electron flow - properties that could be useful in quantum computing and information processing. Researchers at SLAC and Stanford used a process called high harmonic generation to separately probe electron behavior in both of those domains. The method should be applicable to a broad range of quantum materials. (2021-02-02)

Extreme UV laser shows generation of atmospheric pollutant
Hokkaido University scientists show that under laboratory conditions, ultraviolet light reacts with nitrophenol to produce smog-generating nitrous acid. (2021-02-02)

Photonics research makes smaller, more efficient VR, augmented reality tech possible
Engineering researchers have developed and demonstrated a new approach for designing photonic devices. The advance allows them to control the direction and polarization of light from thin-film LEDs, paving the way for a new generation of virtual reality (VR) and augmented reality (AR) technologies. (2021-02-01)

High-speed holographic fluorescence microscopy system with submicron resolution
The National Institute of Information and Communications Technology (NICT), Tohoku University, Toin University of Yokohama, and Japan Science and Technology Agency (JST) have succeeded in developing a scanless high-speed holographic fluorescence microscopy system with submicron resolution for a 3D space. The system is based on digital holography. The developed microscopy system has an algorithm to acquire 3D information of fluorescent objects toward scanless 3D measurement in less than 1 millisecond. (2021-01-29)

Light pollution linked to preterm births, reduced birth weights
Researchers discovered that light pollution is linked to preterm birth, a shortened gestational length, and reduced birth weight. babies born too early have higher rates of death and disability. In 2018, preterm birth and low birth weight accounted for roughly 17% of infant deaths (deaths before one year of age). Researchers hope this spawns policy discussion around minimizing light pollution. (2021-01-28)

White turns into (extreme-)ultraviolet
Researchers from the Max Born Institute for Nonlinear Optics and Short Pulse Spectroscopy (MBI) have developed a new method to modify the spectral width of extreme-ultraviolet (XUV) light. By employing a novel phase-matching scheme in four-wave mixing, they could compress the spectral width of the initial broadband light by more than hundred times. The detailed experimental and theoretical results have been published in Nature Photonics. (2021-01-25)

Light pollution linked to preterm birth increase
Scientists conducted the first study to examine the fetal health impact of light pollution based on a direct measure of skyglow, an important aspect of light pollution. Using an empirical regularity discovered in physics, called Walker's Law, a team from Lehigh University, Lafayette College and the University of Colorado Denver in the U.S., found evidence of reduced birth weight, shortened gestational length and preterm births. (2021-01-25)

A world first in circadian clock manipulation
A new method developed by Nagoya University and Groningen University scientists allows for reversible manipulation of the circadian clock period using a light-activated switch. Compounds which act on clock proteins were identified through large-scale chemical screening, and modified to include a light-activated switch, which was further modified to react to non-harmful visible light, creating a non-toxic and fully reversible circadian clock control process. (2021-01-24)

A method for calculating optimal parameters of liquid chrystal displays developed at RUDN University
A professor from RUDN University together with his colleagues from Saratov Chernyshevsky State University and D. Mendeleev University of Chemical Technology of Russia developed a method for calculating the parameters of diffraction optical elements used in LCDs. In particular, the new technology can be used to expand the angle of view while preserving high resolution and color rendition. (2021-01-22)

Gold nanoparticles more stable by putting rings on them
Hokkaido University scientists have found a way to prevent gold nanoparticles from clumping, which could help towards their use as an anti-cancer therapy. (2021-01-21)

Disagreeing takes up a lot of brain real estate
In a new study Yale scientists looked into the brains of individuals engaged in conversation. What they observed varied significantly depending on whether or not the participants were in agreement. (2021-01-13)

More than just a sun tan: Ultraviolet light helps marine animals to tell the time of year
Changes in daylength are a well-established annual timing cue for animal behavior and physiology. An international collaboration of scientists led by Kristin Tessmar-Raible at the Max Perutz Labs, a joint venture of the University of Vienna and the Medical University of Vienna, now shows that, in addition to daylength, marine bristle worms sense seasonal intensity changes of UVA/deep violet light to adjust the levels of important neurohormones and their behavior. The study is published in Nature Ecology and Evolution. (2021-01-11)

3D-printed smart gel changes shape when exposed to light
Inspired by the color-changing skin of cuttlefish, octopuses and squids, Rutgers engineers have created a 3D-printed smart gel that changes shape when exposed to light, becomes ''artificial muscle'' and may lead to new military camouflage, soft robotics and flexible displays. The engineers also developed a 3D-printed stretchy material that can reveal colors when light changes, according to their study in the journal ACS Applied Materials & Interfaces. (2021-01-05)

Convex to concave: More metasurface moiré results in wide-range lens
The odd, wavy pattern that results from viewing certain phone or computer screens through polarized glasses has led researchers to take a step toward thinner, lighter-weight lenses. Called moiré, the pattern is made by laying one material with opaque and translucent parts at an angle over another material of similar contrast. (2021-01-04)

Uncovering how plants see blue light
Plants can perceive and react to light across a wide spectrum. New research from the UC Davis College of Biological Sciences shows how plants can respond to blue light in particular by revealing the structure of cryptochrome-2, the molecule that reacts to blue light. (2021-01-04)

Experiment takes 'snapshots' of light, stops light, uses light to change properties of matter
The team generated a movie of how light waves churn on their nanometer wavelength scale by imaging electrons that two light photons coming together cause to emit from the surface. (2020-12-23)

A blazar in the early universe
Observations with the continent-wide Very Long Baseline Array (VLBA) reveal previously unseen details in a jet of material ejected from the core of a galaxy seen as it was when the universe was only about 7% of its current age. (2020-12-22)

Bio-inspired endoscope provides 3D visible and near-infrared images simultaneously
Researchers have developed a new bio-inspired medical endoscope that can acquire 3D visible light and near-infrared fluorescence images at the same time. It features an optical design that combines the high-resolution 3D imaging of human vision with the mantis shrimp's capability to simultaneously detect multiple wavelengths of light. (2020-12-22)

Maternal Immune Activation Induces Sustained Changes in Fetal Microglia Motility
Researchers at the Kobe University Graduate School of Medicine have revealed that alterations in fetal microglia resulting from maternal inflammation could contribute towards the onset of developmental and psychiatric disorders. These results can help clarify how changes in microglial process motility affect the development of the neural network, thus contributing towards the treatment of these disorders. (2020-12-22)

Optoelectronic devices that emit warm and cool white light
A single semiconducting material can produce white light by emitting light across the visible spectrum. (2020-12-21)

Goldilocks and the three quantum dots: Just right for peak solar panel performance
Maximizing the efficiency of renewable energy technology is dependent on creating nanoparticles with ideal dimensions and density, new simulations have shown. (2020-12-20)

Inverted fluorescence
Fluorescence usually entails the conversion of light at shorter wavelengths to light at longer wavelengths. Scientists have now discovered a chromophore system that goes the other way around. When excited by visible light, the fluorescent dyes emit light in the ultraviolet region. According to the study published in the journal Angewandte Chemie, such light upconversion systems could boost the light-dependent reactions for which efficiency is important, such as solar-powered water splitting. (2020-12-18)

New topological properties found in "old" material of Cobalt disulfide
Researchers working with the Schoop Lab discovered the presence of Weyl nodes in bulk CoS2 that allow them to make predictions about its surface properties. The material hosts Weyl-fermions and Fermi-arc surface states within its band structure, which may enable it to serve as a platform for exotic phenomena. (2020-12-18)

Pulp succeeded in diet? Determining the slenderization of wood pulp
Osaka University scientists devise a system for measuring the quality of nanofibrillation for wood pulp using its natural optical birefringence. This work may lead to clear definition and sophisticated utilization of wooden cellulose nanofibers. (2020-12-17)

2D material controls light twice stronger
POSTECH research team identifies second-harmonics generation interference in 2D heterobilayers. (2020-12-17)

When less is more: A single layer of atoms boosts the nonlinear generation of light
A wide array of technologies, ranging from lasers and optical telecommunication to quantum computing rely on nonlinear optical interaction. Typically, these nonlinear interactions, which allow a beam of light, for example, to change its frequency, are implemented by bulk materials. (2020-12-14)

Page 1 of 25 | 1000 Results
   First   Previous   Next      Last   
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.