Current Quantum Physics News and Events | Page 2

Current Quantum Physics News and Events, Quantum Physics News Articles.
Sort By: Most Relevant | Most Viewed
Page 2 of 25 | 1000 Results
New microscopy concept enters into force
The first demonstration of an approach that inverts the standard paradigm of scanning probe microscopy raises the prospect of force sensing at the fundamental limit. (2021-02-05)

Breakthrough in quantum photonics promises a new era in optical circuits
In recently published work, researchers at USC have shown that single photons can be emitted in a uniform way from quantum dots arranged in a precise pattern. The team has used such methods to create single-quantum dots, with their remarkable single-photon emission characteristics. It is expected that the ability to precisely align uniformly-emitting quantum dots will enable the production of optical circuits, potentially leading to novel advancements in quantum computing and communications technologies (2021-02-05)

A new tool in the search for axions
Researchers have discovered a new avenue to search for axions--a hypothetical particle that is one of the candidates of dark matter particles. The group, which usually performs ultra-high precision measurements of the fundamental properties of trapped antimatter, has for the first time used the ultra-sensitive superconducting single antiproton detection system of their advanced Penning trap experiment as a sensitive dark matter antenna. (2021-02-04)

New quantum receiver the first to detect entire radio frequency spectrum
A new quantum sensor can analyze the full spectrum of radio frequency and real-world signals, unleashing new potentials for soldier communications, spectrum awareness and electronic warfare. (2021-02-04)

Harvard scientists use trilayer graphene to observe more robust superconductivity
Harvard scientists report successfully stacking three sheets of graphene and then twisting each of them at a magic angle to produce a three-layered structure that is not only capable of superconductivity but does so more robustly and at higher temperatures than many of the double-stacked graphene. (2021-02-04)

Switching nanolight on and off
The report demonstrates a new method to control the flow of light of nanolight. Optical manipulation on the nanoscale, or nanophotonics, has become a critical area of interest as researchers seek ways to meet the increasing demand for technologies that go well beyond what is possible with conventional photonics and electronics. (2021-02-04)

On the dot: Novel quantum sensor provides new approach to early diagnosis via imaging
A phenomenon called 'oxidative stress' is seen in affected organs during the early stages of certain difficult-to-treat diseases like cancer and kidney dysfunction. Detecting oxidative stress could thus enable early diagnosis and preventive treatments. But, the in vivo measurement of oxidative stress caused by both oxidation and reduction has historically been difficult. Now, scientists have developed an advanced quantum sensor technology that can detect 'oxidative stress' non-invasively throughout the body using fluorescent imaging and MRI. (2021-02-03)

"Ghost particle" ML model permits full quantum description of the solvated electron
Pinning down the nature of bulk hydrated electrons has proven difficult experimentally because of their short lifetime and high reactivity. Theoretical exploration has been limited by the high level of electronic structure theory needed to achieve predictive accuracy. Now, joint work from teams at the University of Zurich and EPFL has resulted in a highly accurate machine-learning model inexpensive enough to allow for a full quantum statistical and dynamical description. (2021-02-03)

A new hands-off probe uses light to explore electron behavior in a topological insulator
Topological insulators are one of the most puzzling quantum materials. Their edges are electron superhighways where electrons flow with no loss, while the bulk of the material blocks electron flow - properties that could be useful in quantum computing and information processing. Researchers at SLAC and Stanford used a process called high harmonic generation to separately probe electron behavior in both of those domains. The method should be applicable to a broad range of quantum materials. (2021-02-02)

Researchers design next-generation photodetector
The new long-wavelength infrared photodetector from Professor Manijeh Razeghi could be used in night vision, optical communication, and thermal and medical imaging. (2021-02-02)

Solving complex physics problems at lightning speed
A calculation so complex that it takes twenty years to complete on a powerful desktop computer can now be done in one hour on a regular laptop. Physicist Andreas Ekström at Chalmers University of Technology, together with international research colleagues, has designed a new method to calculate the properties of atomic nuclei incredibly quickly. (2021-02-01)

Research could dramatically lower cost of electron sources
Rice University engineers have discovered technology that could slash the cost of semiconductor electron sources, key components in devices ranging from night-vision goggles and low-light cameras to electron microscopes and particle accelerators. (2021-02-01)

Physicists create tunable superconductivity in twisted graphene 'nanosandwich'
MIT physicists have created tunable superconductivity in 'magic-angle' trilayer graphene. The structure may reveal conditions necessary for high-temperature superconductivity. The work was led by researchers in the Jarillo-Herrero research group. (2021-02-01)

The first steps toward a quantum brain
An intelligent material that learns by physically changing itself, similar to how the human brain works, could be the foundation of a completely new generation of computers. Radboud physicists working toward this so-called 'quantum brain' have made an important step. They have demonstrated that they can pattern and interconnect a network of single atoms, and mimic the autonomous behaviour of neurons and synapses in a brain. (2021-02-01)

Backreaction observed for first time in water tank black hole simulation
Scientists have revealed new insights into the behaviour of black holes with research that demonstrates how a phenomenon called backreaction can be simulated. (2021-02-01)

Searching for dark matter through the fifth dimension
Theoretical physicists of the PRISMA+ Cluster of Excellence at Johannes Gutenberg University Mainz are working on a theory that goes beyond the Standard Model of particle physics. The central element is an extra dimension in spacetime. Until now, the scientists have faced the problem that the predictions of their theory could not be tested experimentally. They have now overcome this problem in a publication in the current issue of the European Physical Journal C. (2021-02-01)

Beyond qubits: Sydney takes next big step to scale up quantum computing
Professor David Reilly and colleagues have invented a device that operates at 40 times colder than deep space to directly control thousands of qubits, the building blocks of quantum computers. (2021-02-01)

Physicists develop record-breaking source for single photons
Researchers at the University of Basel and Ruhr University Bochum have developed a source of single photons that can produce billions of these quantum particles per second. With its record-breaking efficiency, the photon source represents a new and powerful building-block for quantum technologies. (2021-01-28)

Efficient fluorescent materials and OLEDs for the NIR
Near-infrared emitters (NIR) will be of crucial importance for a variety of biomedical, security and defence applications, as well as for (in)visible light communications and the internet-of-things (IoT). Researchers from the UK and Italy have developed porphyrin oligomer NIR emitters which afford high efficiencies despite being totally free from heavy metals. They demonstrated organic light-emitting diodes (OLEDs) at 850 nm with 3.8% peak external quantum efficiency, together with a novel quantitative model of device efficiency. (2021-01-28)

From heat to spin to electricity: Understanding spin transport in thermoelectric devices
Spin thermoelectric materials are an area of active research because of their potential applications in thermal energy harvesters. However, the physics underlying the effects of interlayers in these materials on spin transport phenomena are unclear. In a recent study, scientists from Chung-Ang University, Korea, shed light on this topic using a newly developed platform to measure the spin Seebeck effect. Their findings pave the way to large-area thermoelectric materials with enhanced properties. (2021-01-28)

It's elemental: Ultra-trace detector tests gold purity
Ultra-trace radiation detection technique sets new global standard for measuring the nearly immeasurable (2021-01-28)

A vacuum-ultraviolet laser with submicrometer spot for spatially resolved photoemission spectroscopy
If vacuum ultraviolet lasers can be focused into a small beam spot, it will allow investigation of mesoscopic materials and structures and enable the manufacture of nano-objects with excellent precision. Towards this goal, Scientist in China invented a 177 nm VUV laser system that can achieve a sub-micron focal spot at a long focal length. This system can be re-equipped for usage in low-cost ARPES and might benefit condensed matter physics. (2021-01-27)

How heavy is dark matter? Scientists radically narrow the potential mass range for the first time
Scientists have calculated the mass range for Dark Matter - and it's tighter than the science world thought. (2021-01-27)

Size of helium nucleus measured more precisely than ever before
In experiments at the Paul Scherrer Institute PSI, an international research collaboration has measured the radius of the atomic nucleus of helium five times more precisely than ever before. With the aid of the new value, fundamental physical theories can be tested and natural constants can be determined even more precisely (2021-01-27)

Nuclear physicist's voyage towards a mythical island
Theories were introduced as far back as the 1960s about the possible existence of superheavy elements. Their most long-lived atomic nuclei could give rise to a so-called ''island of stability'' far beyond the element uranium. However, a new study, led by nuclear physicists at Lund University, shows that a 50-year-old nuclear physics manifesto must now be revised. (2021-01-26)

A benchmark for single-electron circuits
Manipulating individual electrons with the goal of employing quantum effects offers new possibilities in electronics. In order to gain new insights into the physical origin and into metrological aspects of the small, but inevitable fundamental uncertainties governed by the rules of quantum mechanics, scientists from the Physikalisch-Technische Bundesanstalt(PTB) and the University of Latvia have collaborated to develop a statistical testing methodology. Their results have been published in the journal Nature Communications. (2021-01-26)

Optimal information about the invisible
Laser beams can be used to precisely measure an object's position or velocity. Normally, a clear, unobstructed view of this object is required. Irregular environments scatter the light beam - but as it turns out, precisely this effect can be used to obtain optimum information in difficult situations. (2021-01-25)

Adding or subtracting single quanta of sound
Researchers perform experiments that can add or subtract a single quantum of sound--with surprising results when applied to noisy sound fields. (2021-01-25)

How complex oscillations in a quantum system simplify with time
With a clever experiment, physicists have shown that in a one-dimensional quantum system, the initially complex distribution of vibrations or phonons can change over time into a simple Gaussian bell curve. The experiment took place at the Vienna University of Technology, while the theoretical considerations were carried out by a joint research group from the Freie Universität Berlin and HZB. (2021-01-25)

What's in a name? A new class of superconductors
A new theory that could explain how unconventional superconductivity arises in a diverse set of compounds might never have happened if physicists Qimiao Si and Emilian Nica had chosen a different name for their 2017 model of orbital-selective superconductivity. (2021-01-25)

Highly efficient perovskite light-emitting diodes for next-generation display technology
Highly efficient perovskite light-emitting diodes for next-generation display technology. (2021-01-24)

Reducing traps increases performance of organic photodetectors
Physicists at the Dresden Integrated Center for Applied Physics and Photonic Materials (IAPP) discovered that trap states rule the performance of organic photodetectors, ultimately limiting their detectivity. These highly promising results have now been published in the renowned scientific journal Nature Communications. (2021-01-22)

New blueprint for more stable quantum computers
Researchers at the Paul Scherrer Institute PSI have put forward a detailed plan of how faster and better defined quantum bits - qubits - can be created. The central elements are magnetic atoms from the class of so-called rare-earth metals, which would be selectively implanted into the crystal lattice of a material. Each of these atoms represents one qubit. The researchers have demonstrated how these qubits can be activated, entangled, used as memory bits, and read out. (2021-01-22)

Alpha particles lurk at the surface of neutron-rich nuclei
Scientists from an international collaboration have found evidence of alpha particles at the surface of neutron-rich heavy nuclei, providing new insights into the structure of neutron stars, as well as the process of alpha decay. (2021-01-21)

Bringing atoms to a standstill: NIST miniaturizes laser cooling
Scientists at the National Institute of Standards and Technology (NIST) have miniaturized the optical components required to cool atoms down to a few thousandths of a degree above absolute zero, the first step in employing them on microchips to drive a new generation of super-accurate atomic clocks, enable navigation without GPS, and simulate quantum systems. (2021-01-21)

Defects may help scientists understand the exotic physics of topology
Real-world materials are usually messier than the idealized scenarios found in textbooks. Imperfections can add complications and even limit a material's usefulness. To get around this, scientists routinely strive to remove defects and dirt entirely, pushing materials closer to perfection. Now, researchers at the University of Illinois at Urbana-Champaign have turned this problem around and shown that for some materials defects could act as a probe for interesting physics, rather than a nuisance. (2021-01-21)

Researchers improve data readout by using 'quantum entanglement'
Researchers say they have been able to greatly improve the readout of data from digital memories - thanks to a phenomenon known as 'quantum entanglement'. (2021-01-20)

NUST MISIS scientists develop fastest-ever quantum random number generator
An international research team has developed a fast and affordable quantum random number generator. The device created by scientists from NUST MISIS, Russian Quantum Center, University of Oxford, Goldsmiths, University of London and Freie Universität Berlin produces randomness at a rate of 8.05 gigabits per second, which makes it the fastest random number generator of its kind. The study has been published in Physical Review X. (2021-01-20)

Innovations through hair-thin optical fibres
Scientists at the University of Bonn have built hair-thin optical fibre filters in a very simple way. They are not only extremely compact and stable, but also colour-tunable. This means they can be used in quantum technology and as sensors for temperature or for detecting atmospheric gases. The results have been published in the journal ''Optics Express''. (2021-01-20)

One-dimensional quantum nanowires fertile ground for Majorana zero modes
One-dimensional quantum 'nanowires' - which have length, but no width or height - provide a unique environment for the formation and detection of a quasiparticle known as a Majorana zero mode, which are their own antimatter particle. A new UNSW advance in detection of these exotic quasiparticles (just published in Nature Communications) has potential applications in fault-resistant topological quantum computers, and topological superconductivity. (2021-01-19)

Page 2 of 25 | 1000 Results
   First   Previous   Next      Last is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to