Current Quantum News and Events

Current Quantum News and Events, Quantum News Articles.
Sort By: Most Relevant | Most Viewed
Page 1 of 25 | 1000 Results
Adding or subtracting single quanta of sound
Researchers perform experiments that can add or subtract a single quantum of sound--with surprising results when applied to noisy sound fields. (2021-01-25)

How complex oscillations in a quantum system simplify with time
With a clever experiment, physicists have shown that in a one-dimensional quantum system, the initially complex distribution of vibrations or phonons can change over time into a simple Gaussian bell curve. The experiment took place at the Vienna University of Technology, while the theoretical considerations were carried out by a joint research group from the Freie Universität Berlin and HZB. (2021-01-25)

What's in a name? A new class of superconductors
A new theory that could explain how unconventional superconductivity arises in a diverse set of compounds might never have happened if physicists Qimiao Si and Emilian Nica had chosen a different name for their 2017 model of orbital-selective superconductivity. (2021-01-25)

Highly efficient perovskite light-emitting diodes for next-generation display technology
Highly efficient perovskite light-emitting diodes for next-generation display technology. (2021-01-24)

New blueprint for more stable quantum computers
Researchers at the Paul Scherrer Institute PSI have put forward a detailed plan of how faster and better defined quantum bits - qubits - can be created. The central elements are magnetic atoms from the class of so-called rare-earth metals, which would be selectively implanted into the crystal lattice of a material. Each of these atoms represents one qubit. The researchers have demonstrated how these qubits can be activated, entangled, used as memory bits, and read out. (2021-01-22)

Bringing atoms to a standstill: NIST miniaturizes laser cooling
Scientists at the National Institute of Standards and Technology (NIST) have miniaturized the optical components required to cool atoms down to a few thousandths of a degree above absolute zero, the first step in employing them on microchips to drive a new generation of super-accurate atomic clocks, enable navigation without GPS, and simulate quantum systems. (2021-01-21)

Researchers improve data readout by using 'quantum entanglement'
Researchers say they have been able to greatly improve the readout of data from digital memories - thanks to a phenomenon known as 'quantum entanglement'. (2021-01-20)

NUST MISIS scientists develop fastest-ever quantum random number generator
An international research team has developed a fast and affordable quantum random number generator. The device created by scientists from NUST MISIS, Russian Quantum Center, University of Oxford, Goldsmiths, University of London and Freie Universität Berlin produces randomness at a rate of 8.05 gigabits per second, which makes it the fastest random number generator of its kind. The study has been published in Physical Review X. (2021-01-20)

Innovations through hair-thin optical fibres
Scientists at the University of Bonn have built hair-thin optical fibre filters in a very simple way. They are not only extremely compact and stable, but also colour-tunable. This means they can be used in quantum technology and as sensors for temperature or for detecting atmospheric gases. The results have been published in the journal ''Optics Express''. (2021-01-20)

One-dimensional quantum nanowires fertile ground for Majorana zero modes
One-dimensional quantum 'nanowires' - which have length, but no width or height - provide a unique environment for the formation and detection of a quasiparticle known as a Majorana zero mode, which are their own antimatter particle. A new UNSW advance in detection of these exotic quasiparticles (just published in Nature Communications) has potential applications in fault-resistant topological quantum computers, and topological superconductivity. (2021-01-19)

Alcohols exhibit quantum effects
Skoltech scientists and their colleagues from the Russian Quantum Center revealed a significant role of nuclear quantum effects in the polarization of alcohol in an external electric field. The new research provides insight into the properties of liquid dielectrics. The core assumption of the model pertains to a novel understanding of dielectric polarization phenomena in polar liquids by means of nuclear quantum effects. (2021-01-19)

Light-induced twisting of Weyl nodes switches on giant electron current
Scientists at the U.S. Department of Energy's Ames Laboratory and collaborators at Brookhaven National Laboratory and the University of Alabama at Birmingham have discovered a new light-induced switch that twists the crystal lattice of the material, switching on a giant electron current that appears to be nearly dissipationless. (2021-01-19)

Light-controlled Higgs modes found in superconductors; potential sensor, computing uses
Iowa State University's Jigang Wang and a team of researchers have discovered a short-lived form of the famous Higgs boson -- subject of a groundbreaking search at the Large Hadron Collider -- within an iron-based superconductor. This Higgs mode can be accessed and controlled by laser light flashing on the superconductor at trillions of pulses per second. (2021-01-19)

Rethinking spin chemistry from a quantum perspective
Summary Researchers at Osaka City University use quantum superposition states and Bayesian inference to create a quantum algorithm, easily executable on quantum computers, that accurately and directly calculates energy differences between the electronic ground and excited spin states of molecular systems in polynomial time. (2021-01-18)

Scientists' discovery is paving the way for novel ultrafast quantum computers
Scientists at the Institute of Physics of the University of Tartu have found a way to develop optical quantum computers of a new type. Central to the discovery are rare earth ions that have certain characteristics and can act as quantum bits. These would give quantum computers ultrafast computation speed and better reliability compared to earlier solutions. The University of Tartu researchers Vladimir Hizhnyakov, Vadim Boltrushko, Helle Kaasik and Yurii Orlovskii published the results of their research in the scientific journal Optics Communications. (2021-01-15)

Physicists propose a new theory to explain one dimensional quantum liquids formation
Researchers from the Institute of Cosmos Sciences of the University of Barcelona present a microscopic theory of lattice quantum droplets which explains the formation of a new type of quantum droplets that has been experimentally observed in ultracold atomic systems. (2021-01-15)

Is your skin thirsty? Optoacoustic sensor measures water content in living tissue
Researchers from Skoltech and the University of Texas Medical Branch (US) have shown how optoacoustics can be used for monitoring skin water content, a technique which is promising for medical applications such as tissue trauma management and in cosmetology. (2021-01-15)

USTC makes security analysis and improvement of quantum random number generation
Recently, the research team led by academician GUO Guangcan from the USTC of the Chinese Academy of Sciences has made security analysis and improvement of source independent quantum random number generators with imperfect devices. (2021-01-14)

New way to control electrical charge in 2D materials: Put a flake on it
Gaining control of the flow of electrical current through atomically thin materials is important to potential future applications in photovoltaics or computing. Physicists in Arts & Sciences at Washington University in St. Louis have discovered one way to locally add electrical charge to a graphene device. (2021-01-14)

New state of matter in one-dimensional quantum gas
By adding some magnetic flair to an exotic quantum experiment, physicists produced an ultra-stable one-dimensional quantum gas with never-before-seen ''scar'' states - a feature that could someday be useful for securing quantum information. (2021-01-14)

Quantum computers to study the functioning of the molecules of life
A breakthrough that has implications for molecular biology, pharmacology and nanotechnologies. The fields of application are many. Identifying the mechanisms behind neurodegenerative processes in some proteins, for example, can help limit their proliferation. Understanding how a protein takes on a certain shape can open the way to use the nanomachines that nature has designed to cut, edit or block damaged or defective genes. Their study was published in the international academic journal Physical Review Letters (2021-01-14)

Towards applications: ultra-low-loss on-chip zero-index materials
Dirac-cone materials behave like an isotropic and impedance-matched zero-index medium at Dirac-point wavelength, enabling light-matter interactions in a spatially uniform optical mode with arbitrary shapes. However, such interactions are limited to small areas because of the propagation loss. Scientists designed an ultra-low-loss and homogeneous zero-index material by introducing resonance-trapped bound states in the continuum. This design paves the way for leveraging perfect spatial coherence of large-area zero-index materials in linear, nonlinear, and quantum optics (2021-01-14)

Error protected quantum bits entangled
For the first time, physicists from the University of Innsbruck have entangled two quantum bits distributed over several quantum objects and successfully transmitted their quantum properties. This marks an important milestone in the development of fault-tolerant quantum computers. The researchers published their report in Nature. (2021-01-13)

Scientists modeled protein behavior of archaeal viruses to crack protein folding mystery
Scientists from the Pacific Quantum Center of Far Eastern Federal University (FEFU) figured out how the AFV3-109 protein with slipknot structure folds and unfolds depending on temperature. The protein is typical for the viruses of the oldest single-celled organisms that can survive in the extreme conditions of underwater volcanic sources - archaea. The research outcome appears in PLOS ONE. (2021-01-13)

Pivotal discovery in quantum and classical information processing
Researchers have achieved, for the first time, electronically adjustable interactions between microwaves and a phenomenon in certain magnetic materials called spin waves. This could have application in quantum and classical information processing. (2021-01-13)

Long-range energy transport in perovskite nanocrystal films
High efficiency solar cells and light-emitting devices are end-goal targets towards a more sustainable world. Nanostructures possess distinct advantages due to their exceptional optical and electronic properties under the influence of light. Yet, their wide-spread application in real-world devices is limited by their poor transport properties. Scientists discovered that nanocrystals made with halide perovskites, a recently discovered revolutionary semiconductor, can lead to long-range energy transfer, opening new avenues for future devices implementing disruptive nanotechnologies. (2021-01-12)

Electrically switchable qubit can tune between storage and fast calculation modes
To perform calculations, quantum computers need qubits to act as elementary building blocks that process and store information. Now, physicists have produced a new type of qubit that can be switched from a stable idle mode to a fast calculation mode. The concept would also allow a large number of qubits to be combined into a powerful quantum computer, as researchers from the University of Basel and TU Eindhoven have reported in the journal Nature Nanotechnology. (2021-01-11)

Discovery of quantum behavior in insulators suggests possible new particle
A team led by Princeton physicists discovered a surprising quantum phenomenon in an atomically thin insulator made of tungsten ditelluride. The results suggest the formation of completely new types of quantum phases previously hidden in insulators. (2021-01-11)

Entangling electrons with heat
Quantum entanglement is key for next-generation computing and communications technology, Aalto researchers can now produce it using temperature differences. (2021-01-08)

Researchers realize efficient generation of high-dimensional quantum teleportation
In a study published in Physical Review Letters, the team led by academician GUO Guangcan from University of Science and Technology of China (USTC) of the Chinese Academy of Sciences (CAS) made progress in high dimensional quantum teleportation. The researchers demonstrated the teleportation of high-dimensional states in a three-dimensional six-photon system. (2021-01-08)

Researchers question fundamental study on the Kondo effect
In 1998, spectroscopic studies on the Kondo effect using scanning tunnelling microscopy were published, which are considered ground-breaking and have triggered countless others of a similar kind. Many of these studies may have to be re-examined now that researchers from Jülich, Germany have shown that the Kondo effect cannot be proven beyond doubt by this method. Instead, another phenomenon is creating precisely the spectroscopic ''fingerprint'' that was previously attributed to the Kondo effect. (2021-01-07)

A bit too much: reducing the bit width of Ising models for quantum annealing
Quantum annealers are devices that physically implement a quantum system called the 'Ising model' to solve combinatorial optimization problems. However, the coefficients of the Ising model often require a large bit width, making it difficult to implement physically. Now, scientists from Japan demonstrate a method to reduce the bit width of any Ising model, increasing the applicability and versatility of quantum annealers in many fields, including cryptography, logistics, and artificial intelligence. (2021-01-06)

The world's first integrated quantum communication network
Chinese scientists have established the world's first integrated quantum communication network, combining over 700 optical fibers on the ground with two ground-to-satellite links to achieve quantum key distribution over a total distance of 4,600 kilometers for users across the country. (2021-01-06)

Physicists observe competition between magnetic orders
Two-dimensional materials, consisting of a single layer of atoms, have been booming in research for years. They possess novel properties that can only be explained with the help of the laws of quantum mechanics. Researchers have now used ultracold atoms to gain new insights into previously unknown quantum phenomena. They found out that the magnetic orders between two coupled thin films of atoms compete with each other. The study has been published in Nature. (2021-01-06)

Breaking through the resolution barrier with quantum-limited precision
Researchers at Paderborn University have developed a new method of distance measurement for systems such as GPS, which achieves more precise results than ever before. Using quantum physics, the team led by Leibniz Prize winner Professor Christine Silberhorn has successfully overcome the so-called resolution limit. (2021-01-05)

Scientists reach limit of multi-parameter quantum measurement with zero trade-off
Real-life applications like magnetometry or quantum gyroscope typically involve precise measurement on multiple parameters. How to achieve the ultimate precision limits simultaneously is a long sought-after grail in the field. (2021-01-04)

Scrambled supersolids
Supersolids are fluid and solid at the same time. Physicists from Innsbruck and Geneva have for the first time investigated what happens when such a state is brought out of balance. They discovered a soft form of a solid of high interest for science. As the researchers led by Francesca Ferlaino and Thierry Giamarchi report in Nature Physics, they were also able to reverse the process and restore supersolidity. (2021-01-04)

Microfabricated elastic diamonds improve material's electronic properties
Overcoming a key obstacle in achieving diamond-based electronic and optoelectronic devices, researchers have presented a new way to fabricate micrometer-sized diamonds that can elastically stretch. (2020-12-31)

Industry collaboration leads to important milestone in the creation of a quantum computer
One of the obstacles for progress in the quest for a working quantum computer has been that the working devices that go into a quantum computer and perform the actual calculations, the qubits, have hitherto been made by universities and in small numbers. But in recent years, a pan-European collaboration, in partnership with French microelectronics leader CEA-Leti, has been exploring everyday transistors--that are present in billions in all our mobile phones--for their use as qubits. (2020-12-28)

Perfect transmission through barrier using sound
A research team led by Professor Xiang Zhang, President of the University of Hong Kong (HKU) when he was a professor at the University of California, Berkeley, (UC Berkeley) has for the first time experimentally proved a century old quantum theory that relativistic particles can pass through a barrier with 100% transmission. (2020-12-23)

Page 1 of 25 | 1000 Results
   First   Previous   Next      Last is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to