Current Semiconductors News and Events

Current Semiconductors News and Events, Semiconductors News Articles.
Sort By: Most Relevant | Most Viewed
Page 1 of 20 | 776 Results
Researchers create 'beautiful marriage' of quantum enemies
Cornell University scientists have identified a new contender when it comes to quantum materials for computing and low-temperature electronics. (2021-02-22)

Tapping into waste heat for electricity by nanostructuring thermoelectric materials
Thermoelectric semiconductors can convert waste heat into useful electricity. However, obtaining lead-free semiconductors with high thermoelectric performance has proven to be difficult. Now, scientists from Chung-Ang University, Korea, have developed a novel strategy to produce tin telluride (SnTe) nanosheets directly from tin selenide nanosheets (SnSe), the latter of which are easier to fabricate. Their strategy paves the way for better nanostructuring in SnTe, which greatly enhances its thermoelectric properties. (2021-02-16)

New way to power up nanomaterials for electronic applications
UCLA materials scientists and colleagues have discovered that perovskites, a class of promising materials that could be used for low-cost, high-performance solar cells and LEDs, have a previously unutilized molecular component that can further tune the electronic property of perovskites. (2021-02-05)

Research could dramatically lower cost of electron sources
Rice University engineers have discovered technology that could slash the cost of semiconductor electron sources, key components in devices ranging from night-vision goggles and low-light cameras to electron microscopes and particle accelerators. (2021-02-01)

Solar material can 'self-heal' imperfections, new research shows
A material that can be used in technologies such as solar power has been found to self-heal, a new study shows. (2021-01-26)

Advanced measurement technology for future semiconductor devices
A team of researchers led by Osaka University investigated beta-gallium oxide (β-Ga2O3), an emerging semiconductor for next-generation power devices, using an advanced method involving terahertz waves -- the technology that could replace conventional yet invasive electrical semiconductor characterizations. (2021-01-25)

Reducing traps increases performance of organic photodetectors
Physicists at the Dresden Integrated Center for Applied Physics and Photonic Materials (IAPP) discovered that trap states rule the performance of organic photodetectors, ultimately limiting their detectivity. These highly promising results have now been published in the renowned scientific journal Nature Communications. (2021-01-22)

CMOS-compatible 3D ferroelectric memory with ultralow power and high speed
POSTECH Professor Jang-Sik Lee's research team develops ferroelectric NAND flash memory. (2021-01-18)

The compound that makes chili peppers spicy also boosts perovskite solar cell performance
Research publishing January 13 in the journal Joule, determined that sprinkling capsaicin, the compound that makes peppers spicy, into the precursor of methylammonium lead triiodide (MAPbI3) perovskite during the manufacturing process led to a greater abundance of electrons (instead of empty placeholders) to conduct current at the semiconductor's surface. The addition resulted in polycrystalline MAPbI3 solar cells with the most efficient charge transport to date. (2021-01-13)

No disassembly required: Non-destructive method to measure carrier lifetime in SiC
To develop high-voltage devices made with silicon carbide (SiC), a common semiconducting material, it is necessary to understand its charge carrier lifetime distribution within thick layers. However, available carrier lifetime measurement methods involve the destruction of the sample. Fortunately, in a recent study at Nagoya Institute of Technology, Japan, scientists have developed a novel non-destructive technique with enhanced depth resolution, which will bolster the development of efficient SiC devices for power generation and distribution systems. (2021-01-12)

Microfabricated elastic diamonds improve material's electronic properties
Overcoming a key obstacle in achieving diamond-based electronic and optoelectronic devices, researchers have presented a new way to fabricate micrometer-sized diamonds that can elastically stretch. (2020-12-31)

Semiconductor material analysis made possible with artificial intelligence
Researchers in South Korea have developed an artificial intelligence (AI) system that can analyze magnetic systems in an instant. The Korea Institute of Science and Technology(KIST) reported that the collaborative research team led by Dr. Heeyong Kwon and Dr. Junwoo Choi from Spin Convergence Research Center and Professor Changyeon Won from Kyung Hee University developed a technique for estimating magnetic Hamiltonian parameters from spin structure images using AI techniques. (2020-12-16)

Polariton interactions: Light matters
Why do 2D exciton-polaritons interact? This intriguing quasiparticle, which is part light (photon), and part matter (exciton), doesn't behave as predicted: continuing to interact with other particles when confined to two dimensions in extremely cold conditions. A new FLEET/Monash study finds the answer lies in the 'light-like' characteristics of these quasiparticles, with importance for future applications such as ultra-low energy electronics. (2020-12-16)

Physics discovery leads to ballistic optical materials
A team led by a Purdue University scientist has found a way to create more efficient metamaterials using semiconductors and a novel aspect of physics that amplifies the activity of electrons. (2020-12-14)

Atom-thin transistor uses half the voltage of common semiconductors, boosts current density
University at Buffalo researchers report a new, two-dimensional transistor made of graphene and molybdenum disulfide that needs less voltage and can handle more current than today's semiconductors. (2020-12-10)

New blended solar cells yield high power conversion efficiencies
Researchers at Hiroshima University in Japan have blended together various polymer and molecular semiconductors as photo-absorbers to create a solar cell with increased power efficiencies and electricity generation. (2020-12-09)

Multiple semiconductor type switching to boost thermoelectric conversion of waste heat
Scientists at Tokyo Tech demonstrate double charge carrier type switching of tin SnSe semiconductor by doping of antimony Sb. The SnSe carrier type switches from p-type to n-type, and re-switches to p-type as doping increases, due to the switching of major Sb substitution site from Se to Sn, promising reliable charge polarity control, leading to realization of SnSe-based p/n homojunction thermoelectric device for converting waste heat into electricity and new insights on impurity doping of compound semiconductors. (2020-12-09)

In new step toward quantum tech, scientists synthesize 'bright' quantum bits
Qubits (short for quantum bits) are often made of the same semiconducting materials as our everyday electronics. But now an interdisciplinary team of chemists and physicists at Northwestern University and the University of Chicago has developed a new method to create tailor-made qubits: by chemically synthesizing molecules that encode quantum information into their magnetic, or ''spin,'' states. This new bottom-up approach could ultimately lead to quantum systems that have extraordinary flexibility and control, helping pave the way for next-generation quantum technology. (2020-12-08)

Breakthrough optical sensor mimics human eye, a key step toward better AI
CORVALLIS, Ore. - Researchers at Oregon State University are making key advances with a new type of optical sensor that more closely mimics the human eye's ability to perceive changes in its visual field. (2020-12-08)

To accelerate or decelerate in the light-emitting process of zinc-oxide crystals
A recent study has measured the internal quantum efficiency (IQE) of Zinc-Oxide (ZnO) crystals in both the light-emitting process and non-light-emitting process. (2020-12-06)

Dark excitons hit the spotlight
Heralding the end of a decade-long quest, in a promising new class of extremely thin, two-dimensional semiconductors, scientists in Japan have for the first time directly visualized and measured elusive particles, called dark excitons, that cannot be seen by light. The powerful technique, described in Science, could revolutionize research into two-dimensional semiconductors and excitons, with profound implications for future technological devices, from solar cells and LEDs to smartphones and lasers. (2020-12-03)

Guiding the way to improved solar cell performance
Small molecules could hold the key to enhancing the efficiency of organic solar cells. (2020-11-24)

Staying ahead of the curve with 3D curved graphene
A team of researchers has amplified 3D graphene's electrical properties by controlling its curvature. (2020-11-20)

UT researchers establish proof of principle in superconductor study
Three physicists in the Department of Physics and Astronomy at the University of Tennessee, Knoxville, together with their colleagues from the Southern University of Science and Technology and Sun Yat-sen University in China, have successfully modified a semiconductor to create a superconductor, which may lead to unforeseen advancements in technology. (2020-11-18)

New semiconductor coating may pave way for future green fuels
Hydrogen gas and methanol for fuel cells or as raw materials for the chemicals industry, for example, could be produced more sustainably using sunlight, a new Uppsala University study shows. In this study, researchers have developed a new coating material for semiconductors that may create new opportunities to produce fuels in processes that combine direct sunlight with electricity. The study is published in Nature Communications. (2020-11-18)

Optoelectronic detectors capable of perceiving light intensity and color
Current optoelectronic detectors are only able to perceive light intensities. Although multi-photosensor spectrometers are capable of perceiving intensity and colour, they require chip-level assembly and can generate redundant signals. Scientists in China have created a low cost, flexible device consists of a photoactive layer made from a semiconductor with a small bandgap and a photosensing layer made from a semiconductor with gradient bandgaps, which is capable of detecting light intensity and perceiving colour. (2020-11-11)

Turning heat into power with efficient organic thermoelectric material
Thermoelectric materials can turn a temperature difference into electricity. Organic thermoelectric materials could be used to power wearable electronics or sensors; however, the power output is still very low. An international team led by Jan Anton Koster, Professor of Semiconductor Physics at the University of Groningen, has now produced an n-type organic semiconductor with superior properties that brings these applications a big step closer. Their results were published in the journal Nature Communications. (2020-11-11)

Researchers trap electrons to create elusive crystal
Now, a Cornell-led collaboration has developed a way to stack two-dimensional semiconductors and trap electrons in a repeating pattern that forms a specific and long-hypothesized crystal. (2020-11-11)

Germanium telluride's hidden properties at the nanoscale revealed
Germanium Telluride is an interesting candidate material for spintronic devices. In a comprehensive study at BESSY II, a Helmholtz-RSF Joint Research Group has now revealed how the spin texture switches by ferroelectric polarization within individual nanodomains. (2020-11-06)

Scientists develop method to detect charge traps in organic semiconductors
Scientists at Swansea University have developed a very sensitive method to detect the tiny signatures of so called 'charge traps' in organic semiconductors. (2020-11-04)

'Transparent solar cells' can take us towards a new era of personalized energy
Solar power has shown immense potential as a futuristic, 'clean' source of energy. No wonder environmentalists worldwide have been looking for ways to advance the current solar cell technology. Now, scientists in Korea have put forth an innovative design for the development of a high-power transparent solar cell. This innovation brings us closer to realizing our goal of a sustainable green future with off-the-grid living. (2020-11-02)

A new method to measure optical absorption in semiconductor crystals
Tohoku University researchers have revealed more details about omnidirectional photoluminescence (ODPL) spectroscopy - a method for probing semiconducting crystals with light to detect defects and impurities. (2020-10-29)

OPD optical sensors that reproduce any color
POSTECH Professor Dae Sung Chung's team uses chemical doping to freely control the colors of organic photodiodes. (2020-10-21)

Modeling organic-field effect transistors with a molecular resolution
Organic field-effect transistors represent a promising type of organic electronic device with applications including (bio)sensors, electrical circuits, or data storage. A fundamental understanding of their operation is critical to their further development and the design of more efficient organic semiconductors. Scientists based in the United States summarize here recent advances in the molecular-level modeling of organic field-effect transistors and outline future directions of interest. (2020-10-13)

Perovskite materials: Neutrons show twinning in halide perovskites
Solar cells based on hybrid halide perovskites achieve high efficiencies. These mixed organic-inorganic semiconductors are usually produced as thin films of microcrystals. An investigation with the Laue camera at the neutron source BER II could now clarify that twinning occurs during crystallisation even at room temperature. This insight is helpful for optimising production processes of halide perovskites. (2020-10-13)

Liquid metals come to the rescue of semiconductors
Two-dimensional semiconductors offer a possible solution to the limited potential for further shrinking of traditional silicon-based electronics: the long-predicted end of 'Moore's Law'. 2D-based electronics, which could eliminate wasted dissipation of heat and allow for very fast, ultra-low energy operation, could be enabled by a new liquid-metal deposition technique developed at UNSW. (2020-10-11)

Metal wires of carbon complete toolbox for carbon-based computers
Carbon-based computers have the potential to be a lot faster and much more energy efficient than silicon-based computers, but 2D graphene and carbon nanotubes have proved challenging to turn into the elements needed to construct transistor circuits. Graphene nanoribbons can overcome these limitations, but to date scientists have been made only semiconductors and insulators, not the metallic wires to connect them. UC Berkeley scientists have now achieved the goal of a metallic graphene nanoribbon. (2020-09-24)

Dresden physicists develop printable organic transistors
Scientists at the Institute of Applied Physics at TU Dresden have come a step closer to the vision of a broad application of flexible, printable electronics. The team around Dr Hans Kleemann has succeeded for the first time in developing powerful vertical organic transistors with two independent control electrodes. The results have recently been published in the renowned online journal ''Nature Communications''. (2020-09-22)

Shedding light on the development of efficient blue-emitting semiconductors
Scientists at Tokyo Institute of Technology (Tokyo Tech) have discovered a new alkali copper halide, Cs5Cu3Cl6I2, that emits pure blue light. The combination of the two halide ions, chloride and iodide, gives the material a crystalline structure made of zigzag chains and peculiar properties that result in highly efficient photoluminescence. This novel compound could be readily used to produce relatively inexpensive and eco-friendly white LEDs and reduce the energy used in the generation of everyday artificial light. (2020-09-17)

Reviewing the quantum material 'engine room', QAHE
An Australian collaboration reviews the quantum anomalous Hall effect (QAHE), one of the most fascinating and important recent discoveries in condensed-matter physics. QAHE allows zero-resistance electrical 'edge paths' in emerging quantum materials such as topological insulators, opening great potential for ultra-low energy electronics. (2020-09-16)

Page 1 of 20 | 776 Results
   First   Previous   Next      Last   
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.