Current Silicon News and Events

Current Silicon News and Events, Silicon News Articles.
Sort By: Most Relevant | Most Viewed
Page 1 of 25 | 1000 Results
The perfect recipe for efficient perovskite solar cells
A long-cherished dream of materials researchers is a solar cell that converts sunlight into electrical energy as efficiently as silicon, but that can be easily and inexpensively fabricated from abundant materials. Scientists at the Helmholtz-Zentrum Berlin have now come a step closer to achieving this. (2021-02-22)

A sharper look at the interior of semiconductors
A research team at Friedrich Schiller University Jena (Germany) developed a high-resolution imaging method based on extreme short-wave UV light. It can be used to examine internal structures in semiconductors non-destructively, and with nanometre precision as the team reported in the current issue of the journal 'Optica'. (2021-02-16)

Move over heavy goggles, here come the ultra-high refractive index lenses
POSTECH professor Junsuk Rho's research team develops a transparent silicon without visible light loss by controlling the silicon atomic structure. (2021-02-14)

Vibrating 2D materials
Two-dimensional materials hold out hope for many technical applications. An international research team now has determined for the first time how strongly 2D materials vibrate when electronically excited with light. (2021-02-11)

Wafer-scale production of graphene-based photonic devices
Graphene Flagship researchers have devised a wafer-scale fabrication method that paves the way to the next generation of telecom and datacom devices. (2021-02-11)

Silicon chip provides low cost solution to help machines see the world clearly
Researchers in Southampton and San Francisco have developed the first compact 3D LiDAR imaging system that can match and exceed the performance and accuracy of most advanced, mechanical systems currently used. (2021-02-10)

A scalable method for the large-area integration of 2D materials
Graphene Flagship researchers report a new method to integrate graphene and 2D materials into semiconductor manufacturing lines, a milestone for the recently launched 2D-EPL project. (2021-02-10)

Silicon waveguides move us closer to faster, light-based logic circuits
IBM researchers have succeeded in guiding visible light through a silicon wire efficiently, an important milestone in the exploration towards a new breed of faster, more efficient logic circuits. (2021-02-08)

Silicon anode structure generates new potential for lithium-ion batteries
New research has identified a nanostructure that improves the anode in lithium-ion batteries. Instead of using graphite for the anode, the researchers turned to silicon: a material that stores more charge but is susceptible to fracturing. The team deposited silicon atoms on top of metallic nanoparticles to form an arched nanostructure, increasing the strength and structural integrity of the anode. Electrochemical tests showed the batteries had a higher charge capacity and longer lifespan. (2021-02-05)

Packing more juice in lithium-ion batteries through silicon anodes and polymeric coatings
Although silicon anodes could greatly boost the capacity of Li-ion batteries, their performance rapidly degrades with use. Polymeric coatings can help solve this problem, but very few studies have explored the underlying mechanisms. In a recent study, scientists from Japan Advanced Institute of Science and Technology investigate how a poly(borosiloxane) coating greatly stabilizes the capacity of silicon anodes, paving the way for better and more durable Li-ion batteries for electric cars and renewable energy harvesting. (2021-02-05)

Some food contamination starts in the soil
Rice husk residue can prevent uptake of harmful elements in rice. (2021-02-03)

Tiny 3D structures enhance solar cell efficiency
A new method for constructing special solar cells could significantly increase their efficiency. Not only are the cells made up of thin layers, they also consist of specifically arranged nanoblocks. This has been shown in a new study by an international research team led by the Martin Luther University Halle-Wittenberg (MLU), which was published in the scientific journal ''Nano Letters''. (2021-02-02)

Fine tuned: adjusting the composition and properties of semiconducting 2D alloys
Semiconducting 2D alloys could be key to overcoming the technical limitations of modern electronics. Although 2D Si-Ge alloys would have interesting properties for this purpose, they were only predicted theoretically. Now, scientists from Japan Advanced Institute of Science and Technology have realized the first experimental demonstration. They have also shown that the Si to Ge ratio can be adjusted to fine tune the electronic properties of the alloys, paving the way for novel applications. (2021-02-02)

Biosensors require robust antifouling protection
Some promising biosensors and medical devices work well within pristine laboratory environments but may stop working once exposed to real-world conditions. A thick layer of foulants will quickly cover biosensors, and there is no good way to revive them once they quit working. Essentially, a biosensor is only as good as its antifouling properties. In APL Materials, researchers review a variety of approaches developed to combat fouling. (2021-02-02)

New metamaterial offers reprogrammable properties
EPFL scientists have developed a metamaterial whose mechanical properties can be reprogrammed on demand and whose internal structure can be modified by applying a magnetic field. (2021-01-20)

Curtin find could slash energy use and cost in making silicon
Curtin University researchers have uncovered a method of making silicon, found commonly in electronics such as phones, cameras and computers, at room temperature. (2021-01-20)

Towards applications: ultra-low-loss on-chip zero-index materials
Dirac-cone materials behave like an isotropic and impedance-matched zero-index medium at Dirac-point wavelength, enabling light-matter interactions in a spatially uniform optical mode with arbitrary shapes. However, such interactions are limited to small areas because of the propagation loss. Scientists designed an ultra-low-loss and homogeneous zero-index material by introducing resonance-trapped bound states in the continuum. This design paves the way for leveraging perfect spatial coherence of large-area zero-index materials in linear, nonlinear, and quantum optics (2021-01-14)

Nanosheet-based electronics could be one drop away
A surprisingly simple method improves 'drop casting' fabrication of tiled nanosheets that could be used in next-generation electronic devices. All you need is a pipette and a hotplate. (2021-01-12)

UCI scientists measure local vibrational modes at individual crystalline faults
Employing newly developed electron microscopy techniques, researchers at the University of California, Irvine and other institutions have, for the first time, measured the spectra of phonons - quantum mechanical vibrations in a lattice - at individual crystalline faults, and they discovered the propagation of phonons near the flaws. The team's findings are the subject of a study published recently in Nature. (2021-01-12)

Old silicon learns new tricks
Researchers from Nara Institute of Science and Technology fabricated regular arrays of iron-coated silicon crystals that are atomically smooth. The defect-free pyramidal composition of the crystals impart magnetic properties that will enhance the functionality of 3D spintronics and other technologies. (2021-01-06)

Chemists synthesize 'flat' silicon compounds
Chemists at the University of Bonn (Germany) have synthesized extremely unusual compounds. Their central building block is a silicon atom. Different from usual, however, is the arrangement of the four bonding partners of the atom, which are not in the form of a tetrahedron around it, but flat like a trapezoid. This arrangement is usually energetically extremely unfavorable, yet the molecules are very stable. The results appear in the Journal of the American Chemical Society. (2020-12-22)

Scientists suggested a method to improve performance of methanol fuel cells
Fuel cells based on methanol oxidation have a huge potential in the motor and technical industries. To increase their energy performance, scientists suggest using electrodes made of thin palladium-based metallic glass films. A group of researchers from Far Eastern Federal University (FEFU), Austria, Turkey, Switzerland, and the UK has developed a new metallic glass for this application. The results were reported in the Nanoscale journal. (2020-12-22)

Scientists develop an efficient way to produce low-cost heatsinks
NUST MISIS scientists found a way to reduce the cost of industrial and electronics heatsinks production up to 10 times. Consequently, the product itself would also cost less. The proposed methods presume the use of rubbers and silicon carbide as components, i.e. these components are mixed, pressed and sintered. The article on the research is published in Polymers. (2020-12-21)

Goldilocks and the three quantum dots: Just right for peak solar panel performance
Maximizing the efficiency of renewable energy technology is dependent on creating nanoparticles with ideal dimensions and density, new simulations have shown. (2020-12-20)

Researchers develop Si-based super-high frequency nanoelectromechanical resonator
Recently, a group led by Prof. GUO Guoping from the University of Science and Technology of China of the Chinese Academy of Sciences, collaborating with Prof. ZHANG Zhen's group from Uppsala University, Sweden, designed and fabricated CMOS-compatible suspended SHT devices which worked as super-high frequency nanoelectromechanical resonators. The work was published in Advanced Materials. (2020-12-15)

Perovskite/silicon tandem solar cells on the magic threshold of 30% efficiency
An HZB team has published a report in the journal Science on the development of its current world record of 29.15% efficiency for a tandem solar cell made of perovskite and silicon. The tandem cell provided stable performance for 300 hours - even without encapsulation. To accomplish this, the group headed by Prof. Steve Albrecht investigated physical processes at the interfaces to improve the transport of the charge carriers. (2020-12-10)

Discovery suggests new promise for nonsilicon computer transistors
An alloy material called InGaAs could be suitable for high-performance computer transistors, according to MIT researchers. If operated at high-frequencies, InGaAs transistors could one day rival those made of silicon. (2020-12-09)

New testing system could become the IoT of photovoltaics
New Suns Voc testing measures system voltage as a function of light intensity in outdoor setting, enabling real-time performance measurement and diagnostics (2020-12-04)

New lab-on-a-chip infection test could provide cheaper, faster portable diagnostics
A tiny new silicon-based lab-on-chip test could pave the way for cheap handheld infectious disease testing. (2020-12-02)

The new generation solar, developed by TalTech, cells contribute to the green revolution
The European Union is determined to undertake a major reform known as the European Green Deal. The biggest changes will take place in the energy production sector, which stands on the brink of a complete transition to renewable energy sources, including solar energy. To boost the power output of solar cells to a terawatt-scale, technologies that leave a smaller ecological footprint, are more efficient and offer a wider range of applications need to be developed alongside with the first-generation silicon-based solar cells. (2020-12-01)

Hitting the quantum 'sweet spot': Researchers find best position for atom qubits in silicon
Australian researchers have located the 'sweet spot' for positioning qubits in silicon to scale up atom-based quantum processors. (2020-11-30)

Surrey's new hybrid X-ray detector goes toe-to-toe with state-of-the-art rivals
A new hybrid X-ray detector developed by the University of Surrey outperforms commercial devices - and could lead to more accurate cancer therapy. (2020-11-26)

Stanford scientists invent ultrafast way to manufacture perovskite solar modules
High-speed manufacturing could advance the commercialization of perovskite modules, a green alternative to conventional solar panels made of silicon. (2020-11-25)

Near-infrared probe decodes telomere dynamics
A new synthetic probe offers a safe and straightforward approach for visualizing chromosome tips in living cells. The probe was designed by scientists at the Institute for Integrated Cell-Material Science (iCeMS) and colleagues at Kyoto University, and could advance research into aging and a wide range of diseases, including cancers. The details were published in the Journal of the American Chemical Society. (2020-11-20)

UT researchers establish proof of principle in superconductor study
Three physicists in the Department of Physics and Astronomy at the University of Tennessee, Knoxville, together with their colleagues from the Southern University of Science and Technology and Sun Yat-sen University in China, have successfully modified a semiconductor to create a superconductor, which may lead to unforeseen advancements in technology. (2020-11-18)

Carbyne - an unusual form of carbon
Which photophysical properties does carbyne have? This was the subject of research carried out by scientists at FAU, the University of Alberta, Canada, and the Ecole Polytechnique Fédérale de Lausanne in Switzerland, which has led to a greater understanding of the properties of this unusual form of carbon. (2020-11-17)

NIST sensor experts invent supercool mini thermometer
Researchers at the National Institute of Standards and Technology (NIST) have invented a miniature thermometer with big potential applications such as monitoring the temperature of processor chips in superconductor-based quantum computers, which must stay cold to work properly. (2020-11-17)

Looking inside the glass
Scientists at The University of Tokyo used electron spectroscopy to probe the coordination structures formed by the silicon atoms in aluminosilicate glass. This work may lead to innovations in the touchscreen and solar panel sectors. (2020-11-16)

Researchers develop ultra-fast polymer modulators that can take the heat
Researchers in Japan have demonstrated a silicon-polymer hybrid modulator that can efficiently and reliably transmit data at 200 Gbit/s over an extremely wide range of temperatures from 25 °C to 110 °C. Use of such robust modulators in high-speed data applications could reduce cooling demands of the systems and expand applications in harsh environments. (2020-11-13)

Sorting out viruses with machine learning
Researchers at Osaka University created a machine-learning system to identify single viral particles that cause respiratory diseases, including coronavirus, using silicon nanopores. The method does not require labels or reagents and may lead to much cheaper and rapid detection of viruses that cause infectious diseases such as COVID-19. (2020-11-11)

Page 1 of 25 | 1000 Results
   First   Previous   Next      Last is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to