Current Spintronics News and Events

Current Spintronics News and Events, Spintronics News Articles.
Sort By: Most Relevant | Most Viewed
Page 1 of 11 | 406 Results
Nanotechnologies reduce friction and improve durability of materials
A team of scientists from the National Research Nuclear University MEPhI and Immanuel Kant Baltic State Federal University suggested using innovative thin films to considerably reduce friction and thus increase the durability of surfaces in mechanisms. This discovery can be important for many fields, from medicine to space technologies. (2021-02-16)

A magnetic twist to graphene
By combining ferromagnets and two rotated layers of graphene, researchers open up a new platform for strongly interacting states using graphene's unique quantum degree of freedom. (2021-02-08)

'Magnetic graphene' forms a new kind of magnetism
Researchers have identified a new form of magnetism in so-called magnetic graphene, which could point the way toward understanding superconductivity in this unusual type of material. (2021-02-08)

Scientists streamline process for controlling spin dynamics
Marking a major achievement in the field of spintronics, researchers at Brookhaven National Laboratory and Yale University have demonstrated the ability to control spin dynamics in magnetic materials by altering their thickness. The study, published today in Nature Materials, could lead to smaller, more energy-efficient electronic devices. (2021-01-18)

Researchers resolve controversy over energy gap of Van der Waals material
Scanning tunneling microscopy and spectroscopy measurements revealed that the energy gap of chromium tribromide is around 0.3 electron volt (eV), which is much smaller than optical measurements, which ranged from 1.68 to 2.1 eV. (2021-01-15)

Dual-shot dynamics and ultimate frequency of all-optical magnetic recording on GdFeCo
Achieving ultrafast and energy-efficient optical control of magnetism beyond light's 'diffraction limit' could revolutionize information-processing technology. Towards this goal, researchers led by Xiangping Li at Jinan University and Alexey V. Kimel at Radboud University have determined the fastest possible rate of the optical reversal of magnetization of up to 3?GHz, and proposed a method to achieve data recording at scales below light's 'diffraction limit', which is generally believed to restrict the attainable resolution. (2021-01-14)

The changing paradigm of next-generation semiconductor memory development
The Korea Institute of Science and Technology(KIST) has announced that the research team led by Dr. Kim Kyoung-Whan at the Center for Spintronics has proposed a new principle about spin memory devices, which are next-generation memory devices. This breakthrough presents new applicability that is different from the existing paradigm. (2021-01-12)

New discovery brings analogue spintronic devices closer
The observation of nonlinearity in electron spin-related processes in graphene makes it easier to transport, manipulate and detect spins, as well as spin-to-charge conversion. It also allows analogue operations such as amplitude modulation and spin amplification. This brings spintronics to the point where regular electronics was after the introduction of the first transistors. These results by University of Groningen physicists were published in the journal Physical Review Applied on 17 December. (2020-12-18)

Semiconductor material analysis made possible with artificial intelligence
Researchers in South Korea have developed an artificial intelligence (AI) system that can analyze magnetic systems in an instant. The Korea Institute of Science and Technology(KIST) reported that the collaborative research team led by Dr. Heeyong Kwon and Dr. Junwoo Choi from Spin Convergence Research Center and Professor Changyeon Won from Kyung Hee University developed a technique for estimating magnetic Hamiltonian parameters from spin structure images using AI techniques. (2020-12-16)

The world's smallest high-performance magnetic tunnel junction
A research group from Tohoku University led by current president Hideo Ohno has developed the world's smallest (2.3 nm) high-performance magnetic tunnel junctions (MTJs). This work is expected to accelerate the advancement of ultrahigh-density, low-power, high-performance non-volatile memory for a variety of applications, such as IoT, AI, and automobiles. (2020-12-08)

Rise of the underdog: a neglected mechanism in antiferromagnets may be key to spintronics
Scientists at Tokyo Institute of Technology (Tokyo Tech) discover a mechanism in antiferromagnets that could be useful for spintronic devices. They theoretically and experimentally demonstrate that one of the magnetization torques arising from optically driven excitations has a much stronger influence on spin orientation than previously given credit for. These findings could provide a new and highly efficient mechanism for manipulating spin. (2020-12-07)

Electrical spin filtering the key to ultra-fast, energy-efficient spintronics
A new UNSW study is a step towards even-faster, more energy-efficient 'spintronic' technology - an exciting, beyond-CMOS technology. The new study applies 'spin-filtering' to separate spin orientation, allowing generation and detection of spin via electrical (rather than magnetic) means, because electric fields are a lot less energetically costly to generate than magnetic fields. (2020-12-03)

Lower current leads to highly efficient memory
Researchers are a step closer to realizing a new kind of memory that works according to the principles of spintronics which is analogous to, but different from, electronics. Their unique gallium arsenide-based ferromagnetic semiconductor can act as memory by quickly switching its magnetic state in the presence of an induced current at low power. Previously, such current-induced magnetization switching was unstable and drew a lot of power, but this new material both suppresses the instability and lowers the power consumption too. (2020-11-30)

Spintronics advances -- Controlling magnetization direction of magnetite at room temperature
Spintronics--based on the principles of electron charge and magnetic spin--goes beyond the limits of conventional electronics. However, spintronic devices are yet to see advances, because controlling the magnetization angle in the magnetic material is difficult. Now, scientists have developed an all-solid redox device composed of magnetite thin film and a solid electrolyte containing lithium ions that successfully manipulated the magnetization angle at room temperature, sparking a possible revolution in the field of spintronics. (2020-11-17)

Antiferromagnetic material's giant stride towards application
The quest for high throughput intelligent computing paradigms - for big data and artificial intelligence - and the ever-increasing volume of digital information has led to an intensified demand for high-speed and low-power consuming next-generation electronic devices. The 'forgotten' world of antiferromagnets (AFM), a class of magnetic materials, offers promise in future electronic device development and complements present-day ferromagnet-based spintronic technologies. (2020-11-12)

Lead-free magnetic perovskites
Scientists at Linköping University, Sweden, working with the perovskite family of materials have taken a step forwards and developed an optoelectronic magnetic double perovskite. The discovery opens the possibility to couple spintronics with optoelectronics for rapid and energy-efficient information storage. (2020-11-06)

Researchers break magnetic memory speed record
An international team of researchers has created a new technique for magnetization switching -- the process used to ''write'' information into magnetic memory -- that is nearly 100 times faster than state-of-the-art spintronic devices. The advance could lead to the development of ultrafast magnetic memory for computer chips that would retain data even when there is no power. (2020-10-28)

Bridging the gap between the magnetic and electronic properties of topological insulators
Scientists at Tokyo Institute of Technology shed light on the relationship between the magnetic properties of topological insulators and their electronic band structure. Their experimental results shed new insights into recent debates regarding the evolution of the band structure with temperature in these materials, which exhibit unusual quantum phenomena and are envisioned to be crucial in next-generation electronics, spintronics, and quantum computers. (2020-09-24)

Ultra-fast magnetic switching with potential to transform fibre optical communications
Researchers have discovered that a new material can act as a super-fast magnetic switch. When struck by successive ultra-short laser pulses it exhibits 'toggle switching' that could increase the capacity of the global fibre optic cable network by an order of magnitude. (2020-09-15)

New technology lets quantum bits hold information for 10,000 times longer than previous record
Quantum bits, or qubits, can hold quantum information much longer now thanks to efforts by an international research team. The researchers have increased the retention time, or coherence time, to 10 milliseconds - 10,000 times longer than the previous record - by combining the orbital motion and spinning inside an atom. Such a boost in information retention has major implications for information technology developments since the longer coherence time makes spin-orbit qubits the ideal candidate for building large quantum computers. (2020-09-04)

Fabrication of a single-crystal giant magnetoresistive device on a polycrystalline film
NIMS and AIST have jointly succeeded in fabricating a giant magnetoresistive (GMR) device comprising single-crystal Heusler alloys on an practical silicon substrate. The team demonstrated for the first time that a single-crystal magnetoresistive device can be bonded onto the surface of a polycrystalline electrode using a wafer bonding technique. (2020-08-27)

Storing information in antiferromagnetic materials
Researchers have now not only been able to show that information storage in antiferromagnetic materials is fundamentally possible, but also to measure how efficiently information can be written electrically in insulating antiferromagnetic materials. (2020-08-24)

A four-state magnetic tunnel junction for novel spintronics applications
Researchers have introduced a new type of MTJ with four resistance states, and successfully demonstrated switching between the states with spin currents. The increased number of states is achieved by replacing one of the magnetic layers with a structure in the form of two crossing ellipses. Such MTJs may enable novel spintronics devices, e.g., multi-level MRAM which stores data much more densely, or neuromorphic memory that meets artificial intelligence challenges in performing cognitive tasks. (2020-08-21)

Ultrafast electrons in magnetic oxides: A new direction for spintronics?
Special metal oxides could one day replace semiconductor materials that are commonly used today in processors. Now, for the first time, an international team of researchers from Martin Luther University Halle-Wittenberg (MLU), the University of Kaiserslautern and the University of Fribourg in Switzerland was able to observe how electronic charge excitation changes electron spin in metal oxides in an ultrafast and inphase manner. The study was published in the journal ''Nature Communications''. (2020-08-19)

Controlling the electron spin: Flip it quickly but carefully
Over the past two decades, a new area at the interface of semiconductor physics, electronics and quantum mechanics has been gaining popularity among theoretical physicists and experimenters. This new field is called spintronics, and one of its main tasks is to learn how to control the spin of charge carriers in well known semiconductor structures. (2020-08-19)

Efficient valves for electron spins
Researchers at the University of Basel in collaboration with colleagues from Pisa have developed a new concept that uses the electron spin to switch an electrical current. In addition to fundamental research, such spin valves are also the key elements in spintronics -- a type of electronics that exploits the spin instead of the charge of electrons. The results were published in the scientific journal Communications Physics. (2020-08-12)

Probing the properties of magnetic quasi-particles
Researchers have for the first time measured a fundamental property of magnets called magnon polarisation -- and in the process, are making progress towards building low-energy devices. (2020-07-28)

Ferried across: Figuring out unconventional spin transport in quantum spin liquids
Scientists at Tokyo Institute of Technology and Yokohama National University uncover the peculiar mechanism by which spin perturbations travel through a seemingly unpassable region of a quantum spin liquid system. This new insight may represent another building block in next-generation electronics and even quantum computers. (2020-07-27)

Higher-order topology found in 2D crystal
The research team took a new approach by using the Josephson junctions to spatially resolve the supercurrent flow and to show that WTe2 does indeed appear to have hinge states and be a higher-order topological insulator. They have identified a new higher-order topological insulator. It is a layered two-dimensional transition metal dichalcogenide (TMDC) called WTe2. This is a famous material in condensed matter physics that displays a variety of exotic properties from titanic magnetoresistance to quantized spin hall effect. (2020-07-15)

The spin state story: Observation of the quantum spin liquid state in novel material
The quantum spin liquid (QSL) state is an exotic state of matter where the spin of electrons, which generally exhibits order at low temperatures, remains disordered. Now, scientists from Tokyo University of Science, Japan, have developed a new material where a two-dimensional QSL state can be experimentally observed, advancing our knowledge of spin behavior, and getting us closer to next-generation ''spintronic'' devices. (2020-07-09)

Magnetic memory states go exponential
Researchers showed that relatively simple structures can support exponential number of magnetic states - much greater than previously thought - and demonstrated switching between the states by generating spin currents. The ability to stabilize and control exponential number of discrete magnetic states in a relatively simple structure constitutes a major contribution to spintronics and may pave the way to multi-level magnetic memory with extremely large number of states per cell, be used for neuromorphic computing, and more. (2020-07-09)

New breakthrough in 'spintronics' could boost high speed data technology
Scientists have made a pivotal breakthrough in the important, emerging field of spintronics -- which could lead to a new high speed energy efficient data technology. (2020-07-03)

A path to new nanofluidic devices applying spintronics technology
Japanese scientists have elucidated the mechanism of the hydrodynamic power generation using spin currents in micrometer-scale channels, finding that power generation efficiency improves drastically as the size of the flow is made smaller. They experimentally demonstrated the fluid power generation phenomenon in the laminar flow region and confirmed that in the laminar flow region, energy conversion efficiency was increased by approximately 100,000 times. (2020-07-02)

Reliable, High-speed MTJ Technology for 1X nm STT-MRAM and NV-Logic Has Wide Applications
Professor Tetsuo Endoh, leading a group of researchers at Tohoku University, has announced the development of an MTJ (Magnetic Tunnel Junction) with 10 ns high-speed write operation, sufficient endurance (>1011), and with highly reliable data retention over 10 years at 1X nm size. Realizing a 1X nm STT-MRAM (Spin Transfer Torque-Magnetoresistive Random Access Memory) and NV(Non-Volatile)-Logic has wide application to a variety of fields. (2020-06-16)

New method predicts spin dynamics of materials for quantum computing
Researchers at UC Santa Cruz have developed a theoretical foundation and new computational tools for predicting a material's spin dynamics, a key property for building solid-state quantum computing platforms and other applications of spintronics. (2020-06-03)

Graphene and 2D materials could move electronics beyond 'Moore's Law'
A team of researchers based in Manchester, the Netherlands, Singapore, Spain, Switzerland and the USA has published a new review on a field of computer device development known as spintronics, which could see graphene used as building block for next-generation electronics. (2020-06-03)

Van der Waals junction spin valves without spacer layer
Distinct from traditional spin valves with a sandwich structure consisting of two ferromagnetic metals decoupled by the insertion of a non-magnetic spacer, recently, a research team led by Prof. Kaiyou Wang from Institute of Semiconductors, Chinese Academy of Sciences, collaborating with their colleagues, has demonstrated two-state and three-state spin-valve effects using Fe3GeTe2 vdW homo-junctions without any spacer layer. Realization of multi spin states using the vdW interfaces could be important for non-volatile spintronic applications. (2020-05-27)

NYU and IBM research takes electrons for a spin in moving toward more efficient, higher density data
Researchers at New York University and IBM Research have demonstrated a new mechanism involving electron motion in magnetic materials that points to new ways to potentially enhance data storage. (2020-05-18)

Scientists break the link between a quantum material's spin and orbital states
Until now, electron spins and orbitals were thought to go hand in hand in a class of materials that's the cornerstone of modern information technology; you couldn't quickly change one without changing the other. But a study at the Department of Energy's SLAC National Accelerator Laboratory shows that a pulse of laser light can dramatically change the spin state of one important class of materials while leaving its orbital state intact. (2020-05-15)

Observation of intervalley transitions can boost valleytronic science and technology
An international research team led by scientists at the University of California, Riverside, has observed light emission from a new type of transition between electronic valleys, known as intervalley transmissions. The research provides a new way to read out valley information, potentially leading to new types of devices. (2020-05-15)

Page 1 of 11 | 406 Results
   First   Previous   Next      Last is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to