Current Superconductor News and Events

Current Superconductor News and Events, Superconductor News Articles.
Sort By: Most Relevant | Most Viewed
Page 1 of 13 | 496 Results
Light-controlled Higgs modes found in superconductors; potential sensor, computing uses
Iowa State University's Jigang Wang and a team of researchers have discovered a short-lived form of the famous Higgs boson -- subject of a groundbreaking search at the Large Hadron Collider -- within an iron-based superconductor. This Higgs mode can be accessed and controlled by laser light flashing on the superconductor at trillions of pulses per second. (2021-01-19)

Keeping the costs of superconducting magnets down using ultrasound
Although magnesium diboride (MgB2) is an interesting superconductor made from abundant materials, increasing its critical current density through easily accessible means has proven challenging. In a recent study, scientists form Shibaura Institute of Technology, Japan, used ultrasonication to turn cheap commercial boron into a fine powder. With it, bulk MgB2 with enhanced superconducting properties can be produced, paving the way to affordable superconducting magnets for medical and transportation applications. (2021-01-14)

Scientists have synthesized an unusual superconducting barium superhydride
A new exotic compound, BaH12, has been discovered by experiment and theory. Unusually, it is a molecular metal and demonstrates the superconducting transition around 20?K at 140?GPa (2021-01-12)

Transition metal 'cocktail' helps make brand new superconductors
Researchers from Tokyo Metropolitan University mixed and designed a new, high entropy alloy (HEA) superconductor, using extensive data on simple superconducting substances with a specific crystal structure. HEAs are known to preserve superconducting characteristics up to extremely high pressures. The new superconductor, Co0.2Ni0.1Cu0.1Rh0.3Ir0.3Zr2, has a superconducting transition at 8K, a relatively high temperature for an HEA. (2021-01-09)

Entangling electrons with heat
Quantum entanglement is key for next-generation computing and communications technology, Aalto researchers can now produce it using temperature differences. (2021-01-08)

Extremely energy efficient microprocessor developed using superconductors
Researchers from Yokohama National University in Japan have developed a prototype microprocessor using superconductor devices that are about 80 times more energy efficient than the state-of-the-art semiconductor devices found in the microprocessors of today's high-performance computing systems. (2020-12-28)

Ultra-thin designer materials unlock quantum phenomena
New research, published in Nature, has measured highly sought-after Majorana quantum states (2020-12-17)

Quantum mysteries: Probing an unusual state in the superconductor-insulator transition
Scientists at Tokyo Institute of Technology approach the two decade-old mystery of why an anomalous metallic state appears in the superconductor-insulator transition in 2D superconductors. Through experimental measurements of a thermoelectric effect, they found that the ''quantum liquid state'' of quantum vortices causes the anomalous metallic state. The results clarify the nature of the transition and could help in the design of superconducting devices for quantum computers. (2020-12-14)

Progress in electronic structure and topology in nickelates superconductors
Recently, superconductivity was discovered in the hole-doped nickelates, wh ich provide us a new platform to study the mechanism of high-temperature superconductivity. Researchers in IOP, CAS, investigated the electronic structure and band topology in this series of compounds carefully, and constructed a simplest two-band model. Besides, a pair of Dirac points are proposed below the Fermi level. After band renormalization by using DFT+Gutzwiller method, the Dirac points become quite closer to the Fermi level. (2020-11-24)

UCF researcher zeroes in on critical point for improving superconductors
Developing a practical ''room temperature'' superconductor is a feat science has yet to achieve. However a UCF researcher and his colleagues are working to move this goal closer to realization by taking a closer look at what is happening in ''strange'' metals. The research was published recently in the journal Communications Physics - Nature. (2020-11-23)

UT researchers establish proof of principle in superconductor study
Three physicists in the Department of Physics and Astronomy at the University of Tennessee, Knoxville, together with their colleagues from the Southern University of Science and Technology and Sun Yat-sen University in China, have successfully modified a semiconductor to create a superconductor, which may lead to unforeseen advancements in technology. (2020-11-18)

NIST sensor experts invent supercool mini thermometer
Researchers at the National Institute of Standards and Technology (NIST) have invented a miniature thermometer with big potential applications such as monitoring the temperature of processor chips in superconductor-based quantum computers, which must stay cold to work properly. (2020-11-17)

Time for a new state of matter in high-temperature superconductors
Scientists from Universität Hamburg have pointed out how to create a time crystal in an intriguing class of materials, the high-temperature superconductors. They propose to drive these superconducting materials into a time crystalline state by inducing Higgs excitations via light. The work is reported in the journal Physical Review Research. (2020-11-12)

HKU physicist joins international effort to unveil the behavior of "strange metals"
An international joint research team including Dr Zi Yang MENG, Associate Professor of Department of Physics at the University of Hong Kong (HKU), has solved the puzzle of the NFL behaviour in interacting electrons systems, and provided a protocol for the establishment of new paradigms in quantum metals, through quantum many-body computation and analytical calculations. The findings have recently been published in Npj Quantum Materials. (2020-10-19)

UNLV and University of Rochester physicists observe room-temperature superconductivity
Physicists from the University of Nevada, Las Vegas and the University of Rochester have made a breakthrough in the long sought-after quest for a room-temperature superconductor, what they call the ''holy grail'' of energy efficiency. (2020-10-14)

Ultrasensitive microwave detector developed
A joint international research team from POSTECH of South Korea, Raytheon BBN Technologies, Harvard University, and Massachusetts Institute of Technology in the U.S., Barcelona Institute of Science and Technology in Spain, and the National Institute for Materials Science in Japan have together developed ultrasensitive sensors that can detect microwaves with the highest theoretically possible sensitivity. (2020-10-01)

Researchers identify new type of superconductor
Until now, the history of superconducting materials has been a tale of two types: s-wave and d-wave. Now, Cornell researchers - led by Brad Ramshaw, the Dick & Dale Reis Johnson Assistant Professor in the College of Arts and Sciences - have discovered a possible third type: g-wave. (2020-09-21)

What happens between the sheets?
Adding calcium to graphene creates an extremely-promising superconductor, but where does the calcium go? In a new study, a Monash-led team has for the first time confirmed what actually happens to those calcium atoms. Surprising everyone, the calcium goes underneath both the upper graphene sheet and a lower 'buffer' sheet, 'floating' the graphene on a bed of calcium atoms. (2020-09-17)

Microsoft and University of Copenhagen collaboration yields promising material for quantum computing
Researchers at the Microsoft Quantum Materials Lab and the University of Copenhagen, working closely together, have succeeded in realizing an important and promising material for use in a future quantum computer. For this end, the researchers have to create materials that hold the delicate quantum information and protect it from decoherence. (2020-09-16)

Superconductors are super resilient to magnetic fields
A Professor at the University of Tsukuba provides a new theoretical mechanism that explains the ability of superconductive materials to bounce back from being exposed to a magnetic field. This work may lead to energy systems that operate without resistive losses. It is also useful for building qubits for quantum computers. (2020-09-10)

Electric current is manipulated by light in an organic superconductor
A polarized petahertz current is driven by an ultrashort laser in an organic superconductor. This is contrast to the common sense which is justified by Ohm's law, i.e., a net current cannot be induced by an oscillating electric field of light. The current enhances near the superconducting transition temperature. The light-driven petahertz current opens a way to high-speed operation of computers which is one million times faster than the conventional ones. (2020-09-04)

Editors' Choice in Science: an unusual superconductor
Professor Wang Jian at Peking University and collaborators observed the experimental evidence of anomalous metallic state and detected type-II Ising superconductivity existing in centrosymmetric systems. (2020-09-02)

Quantum-mechanical interaction of two time crystals has been experimentally demonstrated
An international team of researchers have demonstrated that a new phase of matter which has, until recently, been mere speculation, obeys basic quantum mechanics laws. This offers a basis to investigate the fundamental properties of time crystals further and suggests possible applications in quantum information processing. (2020-08-17)

New advance in superconductors with 'twist' in rhombohedral graphite
An international research team led by The University of Manchester has revealed a nanomaterial that mirrors the 'magic angle' effect originally found in a complex man-made structure known as twisted bilayer graphene -- a key area of study in physics in recent years. (2020-08-12)

Phillips group exactly solves experimental puzzle in high temperature superconductivity
A team of theoretical physicists at the Institute for Condensed Matter Theory (ICMT) in the Department of Physics at the University of Illinois at Urbana-Champaign, led by Illinois Physics Professor Philip Phillips, has for the first time exactly solved a representative model of the cuprate problem, the 1992 Hatsugai-Kohmoto (HK) model of a doped Mott insulator. The team has published its findings online in the journal Nature Physics on July 27, 2020. (2020-07-29)

Room temperature superconductivity creeping toward possibility
The possibility of achieving room temperature superconductivity took a tiny step forward with a recent discovery by a team of Penn State physicists and materials scientists. (2020-07-29)

A 'breath of nothing' provides a new perspective on superconductivity
Zero electrical resistance at room temperature? A material with this property, i.e. a room temperature superconductor, could revolutionize power distribution. But so far, the origin of superconductivity at high temperature is only incompletely understood. Scientists from Universität Hamburg and the Cluster of Excellence 'CUI: Advanced Imaging of Matter' have succeeded in observing strong evidence of superfluidity in a central model system, a two-dimensional gas cloud for the first time. (2020-07-06)

A new way towards super-fast motion of vortices in superconductors discovered
An international team of scientists from Austria, Germany and Ukraine has found a new superconducting system in which magnetic flux quanta can move at velocities of 10-15 km/s. This opens access to investigations of the rich physics of non-equilibrium collective systems and renders a direct-write Nb-C superconductor as a candidate material for single-photon detectors. The results are published in Nature Communications (2020-07-03)

Controlling superconductors with light
IBS scientists has reported a conceptually new method to study the properties of superconductors using optical tools. New theoretical study shows how to use Terahertz light to peep in the secrets of two-dimensional superconductors. (2020-05-26)

Genes of high temperature superconductivity expressed in 3D materials
High temperature superconductors, in particular, those transition metal based ones, host quasi-two dimensional lattice structures. Following the recent progress in understanding the mechanism of unconventional high temperature superconductors, the authors studied a theoretical model and discussed the possibility to realize 'genes of high temperature superconductors' in a cubic three dimensional lattice, and published in SCIENCE CHINA Physics, Mechanics & Astronomy. (2020-05-13)

New Princeton study takes superconductivity to the edge
The existence of superconducting currents, or supercurrents, along the exterior of a superconductor, has been surprisingly hard to find. Now, researchers at Princeton have discovered these edge supercurrents in a material that is both a superconductor and a topological semi-metal. This evidence for topological superconductivity could help provide the foundation for applications in quantum computing and other future technologies. (2020-04-30)

Quantum research unifies two ideas offering an alternative route to topological superconductivity
Researchers from University of Copenhagen have discovered a new way of developing topological superconductivity that may provide a useful route toward the use of Majorana zero modes as the foundation of qubits for quantum information. (2020-04-22)

New measurements reveal evidence of elusive particles in a newly-discovered superconductor
Now a team of researchers at the University of Illinois, led by physicist Vidya Madhavan, in collaboration with researchers from the National Institute of Standards and Technology, the University of Maryland, Boston College, and ETH Zurich, have used high-resolution microscopy tools to peer at the inner-workings of an unusual type of superconductor, uranium ditelluride (UTe2). Their measurements reveal strong evidence that this material may be a natural home to an exotic quasiparticle that's been hiding from physicists for decades. (2020-04-03)

Discovery of zero-energy bound states at both ends of a one-dimensional atomic line defect
Professor Wang Jian's group at Peking University, in collaboration with Professor Wang Ziqiang's group at Boston College, discovered MZMs at both ends of 1D atomic line defects in two-dimensional (2D) iron-based high-temperature superconductors (2020-03-13)

Machine learning illuminates material's hidden order
A Cornell collaboration led by physicist Brad Ramshaw, the Dick & Dale Reis Johnson Assistant Professor in the College of Arts and Sciences, used a combination of ultrasound and machine learning to narrow the possible explanations for what happens to this quantum material when it enters this so-called ''hidden order.'' (2020-03-06)

A talented 2D material gets a new gig
Berkeley Lab scientists have designed a tunable graphene device for experiments in exotic physics, where superconducting, insulating, and magnetic properties can be observed in a single system. The technology could advance the development of next-generation memory devices and quantum computers. (2020-03-04)

Manipulating atoms to make better superconductors
A new study by University of Illinois at Chicago researchers published in the journal Nature Communications shows that it is possible to manipulate individual atoms so that they begin working in a collective pattern that has the potential to become superconducting at higher temperatures. (2020-03-03)

New study explains why superconductivity takes place in graphene
Theoretical physicists take important step in development of high temperature superconductors. (2020-02-28)

CaPtAs: A new noncentrosymmetric superconductor
A research group from Zhejiang University in China has found that the noncentrosymmetric compound CaPtAs is a superconductor, which shows evidence for unconventional properties. This compound provides a new opportunity for studying unconventional superconductivity in systems with broken inversion symmetry. (2020-02-25)

Observation of non-trivial superconductivity on surface of type II Weyl semimetal TaIrTe4
The search for unconventional superconductivity in Weyl semimetal materials is currently an exciting pursuit, since such superconducting phases could potentially be topologically non-trivial and host exotic Majorana modes. Scientists in China, USA and Israel report the novel superconductivity in type II Weyl semimetal TaIrTe4 and indicate that the superconductivity occurs in the surface states. This work provides a new platform to explore topological superconductivity and Majorana modes. (2020-02-25)

Page 1 of 13 | 496 Results
   First   Previous   Next      Last is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to