Current Magnetic fields News and Events

Current Magnetic fields News and Events, Magnetic fields News Articles.
Sort By: Most Relevant | Most Viewed
Page 1 of 25 | 1000 Results
Grabbing viruses out of thin air
Materials that convert mechanical into electrical or magnetic energy could open the door to a future of wearable and structure-integrated virus sensors. (2020-11-25)

Miniscule robots of metal and plastic
Researchers at ETH Zurich have developed a technique for manufacturing micrometre-long machines by interlocking multiple materials in a complex way. Such microrobots will one day revolutionize the field of medicine. (2020-11-24)

NSF's National Solar observatory predicts a large sunspot for Thanksgiving
On November 18 scientists from the US National Science Foundation's National Solar Observatory predicted the arrival of a large sunspot just in time for Thanksgiving. Using a special technique called helioseismology, the team has been ''listening'' to changing sound waves from the Sun's interior which beckon the arrival of a large sunspot. (2020-11-24)

Magnetic brain waves to detect injury and disease
Researchers have designed a new Optically Pumped Magnetometer (OPM) sensor for magnetoencephalography (MEG). The sensor is smaller and more robust in detecting magnetic brain signals and distinguishing them from background noise than existing sensors. Benchmarking tests showed good performance in environmental conditions where other sensors do not work, and it is able to detect brain signals against background magnetic noise, raising the possibility of MEG testing outside a specialised unit. (2020-11-23)

A new beat in quantum matter
Oscillatory behaviors are ubiquitous in Nature, ranging from the orbits of planets to the periodic motion of a swing. In pure crystalline systems, presenting a perfect spatially-periodic structure, the fundamental laws of quantum physics predict a remarkable and counter-intuitive oscillatory behavior: when subjected to a weak electric force, the electrons in the material do not undergo a net drift, but rather oscillate in space, a phenomenon known as Bloch oscillations. (2020-11-23)

Controlling fully integrated nanodiamonds
Physicists at Münster University have succeeded in fully integrating nanodiamonds into nanophotonic circuits and at the same time addressing several of these nanodiamonds optically. The study creates the basis for future applications in the field of quantum sensing schemes or quantum information processors. The results have been published in the journal Nano Letters. (2020-11-23)

Folding of SARS-CoV2 genome reveals drug targets -- and preparation for 'SARS-CoV3'
For the first time, an international research alliance has observed the RNA folding structures of the SARS-CoV2 genome with which the virus controls the infection process. Since these structures are very similar among various beta corona viruses, the scientists not only laid the foundation for the targeted development of novel drugs for treating COVID-19, but also for future occurrences of infection with new corona viruses that may develop in the future. (2020-11-20)

Confirming simulated calculations with experiment results
Dr Zi Yang MENG from Division of Physics and Astronomy, Faculty of Science, the University of Hong Kong (HKU), is pursuing a new paradigm of quantum material research that combines theory, computation and experiment in a coherent manner. Recently, he teamed up with Dr Wei LI from Beihang University, Professor Yang QI from Fudan University, Professor Weiqiang YU from Renmin University and Professor Jinsheng WEN from Nanjing University to untangle the puzzle of Nobel Prize-winning theory Kosterlitz-Thouless (KT) phase. (2020-11-19)

Scientists develop a magnetic switch with lower energy consumption
Joint research conducted by the UAB has shown the ability to switch magnetizacion « on » and « off » using voltage in a new class of easy-to-fabricate materials containing nitrogen. These results, published in Nature Communications, may be used to reduce energy consumption in electronic technologies. (2020-11-18)

UIC researchers describe fundamental processes behind movement of magnetic particles
Researchers from the University of Illinois Chicago describe several fundamental processes associated with the motion of magnetic particles through fluids as they are pulled by a magnetic field. (2020-11-18)

Magnetic spray: Giving inanimate objects new bionergy
Recently, researchers from the Shenzhen Institutes of Advanced Technology (SIAT) of the Chinese Academy of Sciences, together with the City University of Hong Kong (CityU), have developed an agglutinate, reprogrammable, disintegrable and biocompatible magnetic spray (M-spray) that can easily turn inanimate objects into millirobots. (2020-11-18)

Spintronics advances -- Controlling magnetization direction of magnetite at room temperature
Spintronics--based on the principles of electron charge and magnetic spin--goes beyond the limits of conventional electronics. However, spintronic devices are yet to see advances, because controlling the magnetization angle in the magnetic material is difficult. Now, scientists have developed an all-solid redox device composed of magnetite thin film and a solid electrolyte containing lithium ions that successfully manipulated the magnetization angle at room temperature, sparking a possible revolution in the field of spintronics. (2020-11-17)

Manchester group discover new family of quasiparticles in graphene-based materials
After years of dedicated research a group of pioneering scientists led by Nobel Laureate Andre Geim have again revealed a phenomenon that is 'radically different from textbook physics' and this work has led to the discovery and characterisation of a new family of quasiparticles found in graphene-based materials. Called Brown-Zak fermions these extraordinary particles have the potential to achieve the Holy Grail of 2D materials by having ultra-high frequency transistors which can in turn produce a new generation of superfast electronic devices. (2020-11-13)

Antiferromagnetic material's giant stride towards application
The quest for high throughput intelligent computing paradigms - for big data and artificial intelligence - and the ever-increasing volume of digital information has led to an intensified demand for high-speed and low-power consuming next-generation electronic devices. The 'forgotten' world of antiferromagnets (AFM), a class of magnetic materials, offers promise in future electronic device development and complements present-day ferromagnet-based spintronic technologies. (2020-11-12)

Birth of magnetar from colossal collision potentially spotted for first time
Researchers spotted a short gamma ray burst 10 times brighter than predicted. The mysterious brightness might signal the birth of a rare magnetar, formed from two neutron stars merging, which has never before been observed. (2020-11-12)

Connecting two classes of unconventional superconductors
The understanding of unconventional superconductivity is one of the most challenging and fascinating tasks of solid-state physics. Different classes of unconventional superconductors share that superconductivity emerges near a magnetic phase despite the underlying physics is different. (2020-11-11)

Dark matter from the depths of the universe
Cataclysmic astrophysical events such as black hole mergers could release energy in unexpected forms. Exotic low-mass fields (ELFs), for example, could propagate through space and cause feeble signals detectable with quantum sensor networks such as the atomic clocks of the GPS network or the magnetometers of the GNOME network. These results are particularly interesting in the context of the search for dark matter, as low-mass fields are regarded as promising candidates for this exotic form of matter. (2020-11-11)

Radioactive elements may be crucial to the habitability of rocky planets
The amount of long-lived radioactive elements incorporated into a rocky planet as it forms may be a crucial factor in determining its future habitability. That's because internal heating from the radioactive decay of the heavy elements thorium and uranium drives plate tectonics and may be necessary for the planet to generate a magnetic field. Earth's magnetic field protects the planet from solar winds and cosmic rays. (2020-11-10)

Electrified magnets: researchers uncover a new way to handle data
The properties of synthesised magnets can be changed and controlled by charge currents as suggested by a study and simulations conducted by physicists at Martin Luther University Halle-Wittenberg (MLU) and Central South University in China. In the journal 'Nature Communications', the team reports on how magnets and magnetic signals can be coupled more effectively and steered by electric fields. This could result in new, environmentally friendly concepts for efficient communication and data processing. (2020-11-09)

Maunakea telescopes confirm first brown dwarf discovered by radio observations
A collaboration between the LOw Frequency ARray (LOFAR) radio telescope in Europe, the Gemini North telescope, and the NASA InfraRed Telescope Facility (IRTF), both on Maunakea in Hawai'i, has led to the first direct discovery of a cold brown dwarf from its radio wavelength emission. Along with paving the way for future brown dwarf discoveries, this result is an important step towards applying radio astronomy to the exciting field of exoplanets. (2020-11-09)

Scientists design magnets with outstanding properties
An international team of researchers led by the Centre de Recherche Paul Pascal (UMR 5031, CNRS -University of Bordeaux) has discovered a novel way to design magnets with outstanding physical properties, which could make them complementary to, or even competitive with traditional inorganic magnets, which are widely used in everyday appliances. (2020-11-06)

A new candidate material for quantum spin liquids
Using a unique material, EPFL scientists have been able to design and study an unusual state of matter, the Quantum Spin Liquid. The work has significant implications for future technologies, from quantum computing to superconductivity and spintronics. (2020-11-06)

Investigating optical activity under an external magnetic field
A new study published in EPJ B by Chengping Yin, Guangdong Provincial Key Laboratory of Quantum Engineering and Quantum Materials, South China, aims to derive an analytical model of optical activity in black phosphorous under an external magnetic field. (2020-11-06)

Lead-free magnetic perovskites
Scientists at Linköping University, Sweden, working with the perovskite family of materials have taken a step forwards and developed an optoelectronic magnetic double perovskite. The discovery opens the possibility to couple spintronics with optoelectronics for rapid and energy-efficient information storage. (2020-11-06)

Artificial Intelligence has learned to estimate oil viscosity
A group of Skoltech scientists developed machine learning (ML) algorithms that can teach artificial intelligence (AI) to determine oil viscosity based on nuclear magnetic resonance (NMR) data. The new method can come in handy for the petroleum industry and other sectors, which have to rely on indirect measurements to characterize a substance. (2020-11-05)

Scientists work to shed light on Standard Model of particle physics
In a collaborative project with Fermilab, Argonne scientists mapped the magnetic field inside a vacuum with unprecedented accuracy. Results will be used in an experiment to shed light on the Standard Model of particle physics. (2020-11-05)

Astronomers discover clues that unveil the mystery of fast radio bursts
UNLV astrophysicist Bing Zhang and international collaborators recently observed fast radio bursts, powerful radio waves coming from deep space that have been among the most mysterious astronomical phenomena ever observed. Zhang and colleagues contribute to our understanding of where they come from and how they're produced in a series of papers published in Nature. (2020-11-05)

FAST reveals mystery of fast radio bursts from the universe
The Five-hundred-meter Aperture Spherical Radio Telescope (FAST) has revealed some mystery of the fast radio bursts, according to a study published in Nature on Oct. 28. (2020-11-04)

Building a quantum network one node at a time
University of Rochester and Cornell University researchers create 'optically active spin arrays' within a device that could serve as a node for exchanging photons with distant locations. (2020-11-04)

RUDN University chemists developed new magnetic and luminescent lanthanide-siloxane-based compounds
A team of chemists from RUDN University synthesized new organosilicon compounds containing terbium and europium ions. These complexes have an unusual cage-like crystal structure that contains four metal ions. The team was the first to study the magnetic and photophysical properties of such compounds and to observe their magnetic phase transition and luminescence properties. (2020-11-03)

Towards next-generation molecule-based magnets
Magnets are to be found everywhere in our daily lives, whether in satellites, telephones or on fridge doors. However, they are made up of heavy inorganic materials whose component elements are, in some cases, of limited availability. Now, researchers from the CNRS, the University of Bordeaux and the ESRF (European Synchrotron Radiation Facility in Grenoble) have developed a new lightweight molecule-based magnet, produced at low temperatures, and exhibiting unprecedented magnetic properties. (2020-10-29)

Magnetic nature of complex vortex-like structures in a Kagome crystal Fe3Sn2
Three-dimensional magnetic bubbles were demonstrated from the view of integral magnetizations for the first time, which clarify the physics behind complex multi-ring and arc-shaped vortices obtained from two-dimensional transmission electron microscopy magnetic imaging. (2020-10-28)

Topology gets magnetic: The new wave of topological magnetic materials
The electronic structure of nonmagnetic crystals can be classified by complete theories of band topology, reminiscent of a 'topological periodic table.' However, such a classification for magnetic materials has so far been elusive, and hence very few magnetic topological materials have been discovered to date. In a new study published in the journal Nature, an international team of researchers has performed the first high-throughput search for magnetic topological materials, finding over 100 new magnetic topological insulators and semimetals. (2020-10-28)

Researchers break magnetic memory speed record
An international team of researchers has created a new technique for magnetization switching -- the process used to ''write'' information into magnetic memory -- that is nearly 100 times faster than state-of-the-art spintronic devices. The advance could lead to the development of ultrafast magnetic memory for computer chips that would retain data even when there is no power. (2020-10-28)

New imaging technique doubles visibility of brain tumors in scans
A new three-dimensional imaging technique has been developed that greatly improves the visibility of brain tumors in magnetic resonance imaging scans. The technique will potentially enable earlier diagnosis of tumors when they are smaller and more treatable. (2020-10-28)

Physicists circumvent centuries-old theory to cancel magnetic fields
A team of scientists including two physicists at the University of Sussex has found a way to circumvent a 178-year old theory which means they can effectively cancel magnetic fields at a distance. They are the first to be able to do so in a way which has practical benefits. (2020-10-28)

Scientists explain the paradox of quantum forces in nanodevices
Researchers proposed a new approach to describe the interaction of metals with electromagnetic fluctuations (i.e., with random bursts of electric and magnetic fields). Researchers proposed a new approach to describe the interaction of metals with electromagnetic fluctuations (i.e., with random bursts of electric and magnetic fields). (2020-10-27)

Discovery of pH-dependent 'switch' in interaction between pair of protein molecules
All biological processes are in some way pH-dependent. Our human bodies, and those of other organisms, need to maintain specific- and constant- pH regulation in order to function. Changes in pH can have serious biological consequences or, as researchers at the Qingdao Institute of Bioenergy and Bioprocess Technology (QIBEBT), Chinese Academy of Sciences (CAS) found, serious benefits. (2020-10-23)

Reviewing multiferroics for future, low-energy data storage
Big data and exponential demands for computations are driving an unsustainable rise in global ICT energy use. A new UNSW study reviews the use of the 'multiferroic' material bismuth-ferrite, which allows for low-energy switching in data storage devices and could be applied in a future generation of ultra-low-energy electronics. (2020-10-22)

Researchers provide most detailed and complete record yet of Earth's last magnetic reversal
Earth's magnetic fields typically switch every 200 to 300 millennia. Yet, the planet has remained steady for more than twice that now, with the last magnetic reversal occurring about 773,000 years ago. A team of researchers based in Japan now has a better understanding of the geophysical events leading up to the switch and how Earth has responded since then. (2020-10-21)

Page 1 of 25 | 1000 Results
   First   Previous   Next      Last is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to