Current Quantum physics News and Events

Current Quantum physics News and Events, Quantum physics News Articles.
Sort By: Most Relevant | Most Viewed
Page 1 of 25 | 1000 Results
Quantum nanodiamonds may help detect disease earlier
The quantum sensing abilities of nanodiamonds can be used to improve the sensitivity of paper-based diagnostic tests, potentially allowing for earlier detection of diseases such as HIV, according to a study led by UCL researchers in the i-sense McKendry group. (2020-11-25)

Pitt researchers create nanoscale slalom course for electrons
''We already know how to shoot electrons ballistically through one-dimensional nanowires made from these oxide materials,'' explains Levy. ''What is different here is that we have changed the environment for the electrons, forcing them to weave left and right as they travel. This motion changes the properties of the electrons, giving rise to new behavior.'' (2020-11-25)

Shining a light on nanoscale dynamics
Watching metamaterials at work in real time using ultrafast electron diffraction: a research team led by University of Konstanz physicist Peter Baum succeeds in using ultrashort electron pulses to measure light-matter interactions in nanophotonic materials and metamaterials. (2020-11-24)

Understanding the utility of plasmas for medical applications
Plasma medicine is an emerging field, as plasmas show promise for use in a wide range of therapies from wound healing to cancer treatment, and plasma jets are the main plasma sources typically used in plasma-surface applications. To better understand how plasma jets modify the surfaces of biological tissue, researchers conducted computer simulations of the interaction between an atmospheric pressure plasma jet with a surface that has properties similar to blood serum. (2020-11-24)

Quantum magic squares
The magic of mathematics is particularly reflected in magic squares. Recently, quantum physicist Gemma De las Cuevas and mathematicians Tim Netzer and Tom Drescher introduced the notion of the quantum magic square, and for the first time studied in detail the properties of this quantum version of magic squares. (2020-11-24)

New physical picture leads to a precise finite-size scaling of (3+1)-dimensional O(n) critical system
Logarithmic finite-size scaling of O(n) critical systems at upper critical dimensionality has been a long-standing issue. Recently, scientists based in China and US provided a new physical picture. On this basis, they established an explicit scaling form for the free energy density, which simultaneously consists of a scaling term for the Gaussian fixed point and another term with multiplicative logarithmic corrections. They found that the finite-size critical two-point correlation exhibits a two-length behavior. (2020-11-24)

Progress in electronic structure and topology in nickelates superconductors
Recently, superconductivity was discovered in the hole-doped nickelates, wh ich provide us a new platform to study the mechanism of high-temperature superconductivity. Researchers in IOP, CAS, investigated the electronic structure and band topology in this series of compounds carefully, and constructed a simplest two-band model. Besides, a pair of Dirac points are proposed below the Fermi level. After band renormalization by using DFT+Gutzwiller method, the Dirac points become quite closer to the Fermi level. (2020-11-24)

Magnetic brain waves to detect injury and disease
Researchers have designed a new Optically Pumped Magnetometer (OPM) sensor for magnetoencephalography (MEG). The sensor is smaller and more robust in detecting magnetic brain signals and distinguishing them from background noise than existing sensors. Benchmarking tests showed good performance in environmental conditions where other sensors do not work, and it is able to detect brain signals against background magnetic noise, raising the possibility of MEG testing outside a specialised unit. (2020-11-23)

Researchers minimize quantum backaction in thermodynamic systems via entangled measurement
Researchers from University of Science and Technology of China theoretically proved that the backaction can be suppressed to zero in a two qubit system, and conducted the first experiment using entangled collective measurement for minimizing quantum measurement backaction based on photonic system. (2020-11-23)

Scientists make sound-waves from a quantum vacuum at the Black Hole laboratory
Researchers have developed a new theory for observing a quantum vacuum that could lead to new insights into the behaviour of black holes. (2020-11-23)

A new beat in quantum matter
Oscillatory behaviors are ubiquitous in Nature, ranging from the orbits of planets to the periodic motion of a swing. In pure crystalline systems, presenting a perfect spatially-periodic structure, the fundamental laws of quantum physics predict a remarkable and counter-intuitive oscillatory behavior: when subjected to a weak electric force, the electrons in the material do not undergo a net drift, but rather oscillate in space, a phenomenon known as Bloch oscillations. (2020-11-23)

Controlling fully integrated nanodiamonds
Physicists at Münster University have succeeded in fully integrating nanodiamonds into nanophotonic circuits and at the same time addressing several of these nanodiamonds optically. The study creates the basis for future applications in the field of quantum sensing schemes or quantum information processors. The results have been published in the journal Nano Letters. (2020-11-23)

Laser technology: New trick for infrared laser pulses
For a long time, scientists have been looking for simple methods to produce infrared laser pulses. Now a new method has been presented that does not require large experimental setups; it can be easily miniaturized and is therefore particularly interesting for practical applications. (2020-11-23)

The drug aprotinin inhibits entry of SARS-CoV2 in host cells
In order for the SARS-CoV2 virus to enter host cells, its ''spike'' protein has to be cleaved by the cell's own enzymes - proteases. The protease inhibitor aprotinin can prevent cell infection, as scientists at Goethe University, the University of Kent and the Hannover Medical School have now discovered. An aprotinin aerosol is already approved in Russia for the treatment of influenza and could readily be tested for the treatment of COVID-19. (2020-11-23)

UCF researcher zeroes in on critical point for improving superconductors
Developing a practical ''room temperature'' superconductor is a feat science has yet to achieve. However a UCF researcher and his colleagues are working to move this goal closer to realization by taking a closer look at what is happening in ''strange'' metals. The research was published recently in the journal Communications Physics - Nature. (2020-11-23)

Direct visualization of quantum dots reveals shape of quantum wave function
Trapping and controlling electrons in bilayer graphene quantum dots yields a promising platform for quantum information technologies. Researchers at UC Santa Cruz have now achieved the first direct visualization of quantum dots in bilayer graphene, revealing the shape of the quantum wave function of the trapped electrons. (2020-11-23)

Improving quantum dot interactions, one layer at a time
Osaka City University scientists and colleagues in Japan have found a way to control an interaction between quantum dots that could greatly improve charge transport, leading to more efficient solar cells. Their findings were published in the journal Nature Communications. (2020-11-20)

One-way street for electrons
An international team of physicists, led by researchers of the Universities of Oldenburg and Bremen, Germany, has recorded an ultrafast film of the directed energy transport between neighbouring molecules in a nanomaterial. Theoretical simulations confirmed the experimental finding. The results have been published in the journal Nature Nanotechnology. (2020-11-20)

Confirming simulated calculations with experiment results
Dr Zi Yang MENG from Division of Physics and Astronomy, Faculty of Science, the University of Hong Kong (HKU), is pursuing a new paradigm of quantum material research that combines theory, computation and experiment in a coherent manner. Recently, he teamed up with Dr Wei LI from Beihang University, Professor Yang QI from Fudan University, Professor Weiqiang YU from Renmin University and Professor Jinsheng WEN from Nanjing University to untangle the puzzle of Nobel Prize-winning theory Kosterlitz-Thouless (KT) phase. (2020-11-19)

Mystery solved: a 'New Kind of Electrons'
Why do certain materials emit electrons with a very specific energy? This has been a mystery for decades - scientists at TU Wien have found an answer. (2020-11-19)

Scientists age quantum dots in a test tube
Researchers from MIPT and the RAS Institute of Problems of Chemical Physics have proposed a simple and convenient way to obtain arbitrarily sized quantum dots required for physical experiments via chemical aging. (2020-11-19)

Quantifying quantumness: A mathematical project 'of immense beauty'
Large objects behave in accordance with the classical laws of mechanics formulated by Sir Isaac Newton and small ones are governed by quantum mechanics, where an object can behave as both a wave and a particle. The boundary between the classical and quantum realms has always been of great interest. Research reported in AVS Quantum Science, considers the question of what makes something 'more quantum' than another -- is there a way to characterize 'quantumness'? (2020-11-17)

NIST sensor experts invent supercool mini thermometer
Researchers at the National Institute of Standards and Technology (NIST) have invented a miniature thermometer with big potential applications such as monitoring the temperature of processor chips in superconductor-based quantum computers, which must stay cold to work properly. (2020-11-17)

Spintronics advances -- Controlling magnetization direction of magnetite at room temperature
Spintronics--based on the principles of electron charge and magnetic spin--goes beyond the limits of conventional electronics. However, spintronic devices are yet to see advances, because controlling the magnetization angle in the magnetic material is difficult. Now, scientists have developed an all-solid redox device composed of magnetite thin film and a solid electrolyte containing lithium ions that successfully manipulated the magnetization angle at room temperature, sparking a possible revolution in the field of spintronics. (2020-11-17)

New method brings physics to deep learning to better simulate turbulence
Deep learning, also called machine learning, reproduces data to model problem scenarios and offer solutions. However, some problems in physics are unknown or cannot be represented in detail mathematically on a computer. Researchers at the University of Illinois Urbana-Champaign developed a new method that brings physics into the machine learning process to make better predictions. The researchers used turbulence to test their method. (2020-11-16)

No losses: Scientists stuff graphene with light
Physicists from MIPT and Vladimir State University, Russia, have achieved a nearly 90% efficiency converting light energy into surface waves on graphene. They relied on a laser-like energy conversion scheme and collective resonances. (2020-11-16)

Analysis paves way for more sensitive quantum sensors
Theoretical researchers at Pritzker Molecular Engineering have found a way to make quantum sensors exponentially more sensitive by harnessing a unique physics phenomenon. (2020-11-16)

Quantum tunneling pushes the limits of self-powered sensors
Using quantum tunneling, the lab of Shantanu Chakrabarty, at the McKelvey School of Engineering at Washington University in St. Louis, has developed self-powered sensors that can run for more than a year. (2020-11-16)

Manchester group discover new family of quasiparticles in graphene-based materials
After years of dedicated research a group of pioneering scientists led by Nobel Laureate Andre Geim have again revealed a phenomenon that is 'radically different from textbook physics' and this work has led to the discovery and characterisation of a new family of quasiparticles found in graphene-based materials. Called Brown-Zak fermions these extraordinary particles have the potential to achieve the Holy Grail of 2D materials by having ultra-high frequency transistors which can in turn produce a new generation of superfast electronic devices. (2020-11-13)

Chemistry: How nitrogen is transferred by a catalyst
Catalysts with a metal-nitrogen bond can transfer nitrogen to organic molecules. In this process short-lived molecular species are formed, whose properties critically determine the course of the reaction and product formation. The key compound in a catalytic nitrogen-atom transfer reaction has now been analysed in detail by chemists at the University of Göttingen and Goethe University Frankfurt. The detailed understanding of this reaction will allow for the design of catalysts tailored for specific reactions. (2020-11-13)

Handles and holes in abstract spaces: how a material conducts electricity better
A new theory has succeeded in establishing a new relationship between the presence or absence of 'handles' in the space of the arrangements of atoms and molecules that make up a material, and the propensity of the latter to conduct electricity. The insulating materials 'equipped with handles' can conduct electricity as well as metals, while retaining typical properties of insulators, such as transparency. (2020-11-13)

CCNY & partners in quantum algorithm breakthrough
Researchers led by City College of New York physicist Pouyan Ghaemi report the development of a quantum algorithm with the potential to study a class of many-electron quantums system using quantum computers. Their paper, entitled ''Creating and Manipulating a Laughlin-Type ν=1/3 Fractional Quantum Hall State on a Quantum Computer with Linear Depth Circuits,'' appears in the December issue of PRX Quantum, a journal of the American Physical Society. (2020-11-13)

New approach to circuit compression could deliver real-world quantum computers years ahead of schedu
A major technical challenge for any practical, real-world quantum computer comes from the need for a large number of physical qubits to deal with errors that accumulate during computation. Such quantum error correction is resource-intensive and computationally time-consuming. But researchers have found an effective software method that enables significant compression of quantum circuits, relaxing the demands placed on hardware development. (2020-11-12)

Smaller than ever--exploring the unusual properties of quantum-sized materials
Scientists at Tokyo Institute of Technology (Tokyo Tech) synthesize sub-nanometer particles with precisely controlled proportions of indium and tin using specific macromolecular templates called dendrimers. Through a screening process spanning different metallic ratios, they discovered unusual electronic states and optical properties originating from size-miniaturization and elemental-hybridization. Their approach could be a first step in the development of sub-nanoparticles with unique functionalities and characteristics for electronic, magnetic, and catalytic applications. (2020-11-12)

Time for a new state of matter in high-temperature superconductors
Scientists from Universität Hamburg have pointed out how to create a time crystal in an intriguing class of materials, the high-temperature superconductors. They propose to drive these superconducting materials into a time crystalline state by inducing Higgs excitations via light. The work is reported in the journal Physical Review Research. (2020-11-12)

New study outlines steps higher education should take to prepare a new quantum workforce
A new study outlines ways colleges and universities can update their curricula to prepare the workforce for a new wave of quantum technology jobs. Three researchers, including Rochester Institute of Technology Associate Professor Ben Zwickl, suggested steps that need to be taken in a new paper in Physical Review Physics Education Research after interviewing managers at more than 20 quantum technology companies across the U.S. (2020-11-12)

Research produces intense light beams with quantum correlations
Potential applications of research conducted at the University of São Paulo include high-precision metrology and information encoding. (2020-11-12)

Connecting two classes of unconventional superconductors
The understanding of unconventional superconductivity is one of the most challenging and fascinating tasks of solid-state physics. Different classes of unconventional superconductors share that superconductivity emerges near a magnetic phase despite the underlying physics is different. (2020-11-11)

Dark matter from the depths of the universe
Cataclysmic astrophysical events such as black hole mergers could release energy in unexpected forms. Exotic low-mass fields (ELFs), for example, could propagate through space and cause feeble signals detectable with quantum sensor networks such as the atomic clocks of the GPS network or the magnetometers of the GNOME network. These results are particularly interesting in the context of the search for dark matter, as low-mass fields are regarded as promising candidates for this exotic form of matter. (2020-11-11)

New research explores the thermodynamics of off-equilibrium systems
Arguably, almost all truly intriguing systems are ones that are far away from equilibrium -- such as stars, planetary atmospheres, and even digital circuits. But, until now, systems far from thermal equilibrium couldn't be analyzed with conventional thermodynamics and statistical physics. In a paper published in the journal Physical Review Letters, physicist David Wolpert of the Santa Fe Institute presents a new hybrid formalism to overcome these limitations. (2020-11-11)

Page 1 of 25 | 1000 Results
   First   Previous   Next      Last   
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.