Current Transistors News and Events

Current Transistors News and Events, Transistors News Articles.
Sort By: Most Relevant | Most Viewed
Page 1 of 19 | 758 Results
Researchers find conformational disorder tuning charge carrier mobility in 2D perovskites
Researchers from the University of Science and Technology of China synthesized a series of 2D organic-inorganic hybrid perovskites films with large organic spacer cations, and found that mobility and broadband emission showed strong dependence on the molecular conformational order of organic cations. (2020-11-23)

New insights into memristive devices by combining incipient ferroelectrics and graphene
Scientists are working to create neuromorphic computers, with a design based on the human brain. A crucial component is a memristive device, the resistance of which depends on the history of the device - just like the response of our neurons depends on previous input. Materials scientists from the University of Groningen analysed the behaviour of strontium titanium oxide, a platform material for memristor research and used the 2D material graphene to probe it. (2020-11-20)

Next-generation computer chip with two heads
EPFL engineers have developed a computer chip that combines two functions - logic operations and data storage - into a single architecture, paving the way to more efficient devices. Their technology is particularly promising for applications relying on artificial intelligence. (2020-11-05)

A new method to measure optical absorption in semiconductor crystals
Tohoku University researchers have revealed more details about omnidirectional photoluminescence (ODPL) spectroscopy - a method for probing semiconducting crystals with light to detect defects and impurities. (2020-10-29)

Breakthrough quantum-dot transistors create a flexible alternative to conventional electronics
Researchers at Los Alamos National Laboratory and their collaborators from the University of California, Irvine have created fundamental electronic building blocks out of tiny structures known as quantum dots and used them to assemble functional logic circuits. (2020-10-29)

Researchers break magnetic memory speed record
An international team of researchers has created a new technique for magnetization switching -- the process used to ''write'' information into magnetic memory -- that is nearly 100 times faster than state-of-the-art spintronic devices. The advance could lead to the development of ultrafast magnetic memory for computer chips that would retain data even when there is no power. (2020-10-28)

Modeling organic-field effect transistors with a molecular resolution
Organic field-effect transistors represent a promising type of organic electronic device with applications including (bio)sensors, electrical circuits, or data storage. A fundamental understanding of their operation is critical to their further development and the design of more efficient organic semiconductors. Scientists based in the United States summarize here recent advances in the molecular-level modeling of organic field-effect transistors and outline future directions of interest. (2020-10-13)

Liquid metals come to the rescue of semiconductors
Two-dimensional semiconductors offer a possible solution to the limited potential for further shrinking of traditional silicon-based electronics: the long-predicted end of 'Moore's Law'. 2D-based electronics, which could eliminate wasted dissipation of heat and allow for very fast, ultra-low energy operation, could be enabled by a new liquid-metal deposition technique developed at UNSW. (2020-10-11)

HKU Engineering team develops novel miniaturised organic semiconductor
An engineering team led by Dr Paddy Chan Kwok Leung at the Department of Mechanical Engineering of the University of Hong Kong (HKU) has made an important breakthrough in developing the staggered structure monolayer Organic Field Effect Transistors, which sets a major cornerstone to reduce the size of OFETs. The result has been published in the academic journal Advanced Materials. A US patent has been filed for the innovation. (2020-10-08)

Printing organic transistors
Researchers successfully print and demonstrate organic transistors, electronic switches, which can operate close to their theoretical speed limits. They showed high-speed operation only requires low voltages to work, which would reduce the power consumption of their applications. These kinds of transistors are used in display technology such as liquid crystal display (LCD) screens and e-ink. This is the first time this kind of transistor has been printed and it could lead to new curved, flexible and even wearable low power devices. (2020-10-07)

All-2D light-emitting field-effect transistors
All-2D light-emitting field-effect transistors. (2020-10-04)

Metal wires of carbon complete toolbox for carbon-based computers
Carbon-based computers have the potential to be a lot faster and much more energy efficient than silicon-based computers, but 2D graphene and carbon nanotubes have proved challenging to turn into the elements needed to construct transistor circuits. Graphene nanoribbons can overcome these limitations, but to date scientists have been made only semiconductors and insulators, not the metallic wires to connect them. UC Berkeley scientists have now achieved the goal of a metallic graphene nanoribbon. (2020-09-24)

New brain cell-like nanodevices work together to identify mutations in viruses
In the September issue of the journal Nature, scientists from Texas A&M University, Hewlett Packard Labs and Stanford University have described a new nanodevice that acts almost identically to a brain cell. Furthermore, they have shown that these synthetic brain cells can be joined together to form intricate networks that can then solve problems in a brain-like manner. (2020-09-23)

Dresden physicists develop printable organic transistors
Scientists at the Institute of Applied Physics at TU Dresden have come a step closer to the vision of a broad application of flexible, printable electronics. The team around Dr Hans Kleemann has succeeded for the first time in developing powerful vertical organic transistors with two independent control electrodes. The results have recently been published in the renowned online journal ''Nature Communications''. (2020-09-22)

Medical robotic hand? Rubbery semiconductor makes it possible
A medical robotic hand could allow doctors to more accurately diagnose and treat people from halfway around the world, but currently available technologies aren't good enough to match the in-person experience. Now researchers have reported that they have designed and produced a smart electronic skin and a medical robotic hand capable of assessing vital diagnostic data by using a newly invented rubbery semiconductor. (2020-09-16)

Transistor-integrated cooling for a more powerful chip
EPFL researchers have created a single chip that combines a transistor and micro-fluidic cooling system. Their research, which has been published in Nature, should help save energy and further shrink the size of electronic components. (2020-09-09)

Artificial materials for more efficient electronics
The discovery by a team of the University of Geneva of an unprecedented physical effect in a new artificial material marks a significant milestone in the lengthy process of developing ''made-to-order'' materials and more energy-efficient electronics. (2020-08-18)

2D materials for ultrascaled field-effect transistors
Since the discovery of graphene, two-dimensional materials have been the focus of materials research. Among other things, they could be used to build tiny, high-performance transistors. Researchers at ETH Zurich and EPF Lausanne have now simulated and evaluated one hundred possible materials for this purpose and discovered 13 promising candidates. (2020-08-17)

Surrey's simplified circuit design could revolutionise how wearables are manufactured
Researchers have demonstrated the use of a ground-breaking circuit design that could transform manufacturing processes for wearable technology. (2020-08-03)

Photochromic bismuth complexes show great promise for optical memory elements
Russian chemists obtained a new photochromic complex composed of bismuth (III) and viologen cations and used the new compound to create optical memory elements that were shown to be highly efficient and stable. The outcomes of the study may serve to expand the range of microelectronics components in the future. (2020-07-24)

Researchers realize nanoscale electrometry based on magnetic-field-resistant spin sensor
USTC researchers proposed a robust electrometric method utilizing continuous dynamic decoupling (CDD) technique, where the continuous driving fields provide a magnetic-field-resistant dressed frame. (2020-07-17)

Microscopic computers: The wires of the future may be made of molecules
There are physical limits to how powerful computers can become if they are to maintain their size. Molecular electronics can solve that problem, and now SDU researchers are contributing to this field with a new, efficient conducting material, based on molecules. (2020-06-23)

Researchers pioneer new production method for heterostructure devices
Researchers at the University of Exeter have developed a pioneering production method for heterostructure devices, based on 2D materials such as graphene. (2020-06-19)

Researchers discover unique material design for brain-like computations
Over the past few decades, computers have seen dramatic progress in processing power; however, even the most advanced computers are relatively rudimentary in comparison with the complexities and capabilities of the human brain. (2020-06-18)

A salt solution toward better bioelectronics
A water-stable dopant enhances and stabilizes the performance of electron-transporting organic electrochemical transistors. (2020-06-14)

Engineers put tens of thousands of artificial brain synapses on a single chip
MIT engineers have designed a 'brain-on-a-chip,' smaller than a piece of confetti, that is made from tens of thousands of artificial brain synapses known as memristors -- silicon-based components that mimic the information-transmitting synapses in the human brain. (2020-06-08)

Graphene and 2D materials could move electronics beyond 'Moore's Law'
A team of researchers based in Manchester, the Netherlands, Singapore, Spain, Switzerland and the USA has published a new review on a field of computer device development known as spintronics, which could see graphene used as building block for next-generation electronics. (2020-06-03)

Tuning the interfacial properties of 2D heterophases though tilt-angles
For devices based on atomically thin two-dimensional (2D) materials, the properties of the interface play important roles in determining their performances. Chinese scientists correlated the electronic states of the 2D 1T'/2H-MoTe2 (metallic/semiconducting) interface with its atomic structures and found that its contact characteristics are tilt angle-dependent, providing useful guidelines to tune the local band structure and contact resistance via phase engineering. (2020-06-02)

Boosting energy efficiency of 2D material electronics using topological semimetal
SUTD researchers discover a new way to boost the energy efficiency of 2D semiconductor electronics by synergizing 2D materials and topological semimetals. (2020-06-02)

Carbon nanotube transistors make the leap from lab to factory floor
A technique for making carbon nanotube transistors in large quantities paves the way for more energy efficient, 3D microprocessors. (2020-06-01)

Study: Paper-thin gallium oxide transistor handles more than 8,000 volts
University at Buffalo electrical engineers created a gallium oxide-based transistor that can handle more than 8,000 volts. The transistor could lead to smaller and more efficient electronic systems that control and convert electric power -- a field of study known as power electronics -- in electric cars, locomotives and airplanes. In turn, this could help improve how far these vehicles can travel. (2020-05-29)

Worth their salt: Skoltech and MIPT researchers report first case of hexagonal NaCl
Skoltech and MIPT scientists have predicted and then experimentally confirmed the existence of exotic hexagonal thin films of NaCl on a diamond surface. These films may be useful as gate dielectrics for field effect transistors in electric vehicles and telecommunication equipment. (2020-05-25)

A theoretical boost to nano-scale devices
Researchers with the School of Electrical Engineering at KAIST have developed a new approach to the underlying physics of semiconductors. They calculated the quasi-Fermi levels in molecular junctions applying an initio approach. (2020-05-17)

Physicists offer a new 'spin' on memory
University of Arizona researchers report a discovery that opens new possibilities in the development of spintronics, a new type of memory storage capable of processing information much faster than current technology while consuming less energy. (2020-05-15)

Atomically thin magnets for next generation spin and quantum electronics
In 2005, Science asked if it was possible to develop a magnetic semiconductor that could work at room temperature. Now, just fifteen years later, researchers at Stevens Institute of Technology have developed those materials in two-dimensional form, solving one of science's most intractable problems. (2020-05-13)

NIST scientists create new recipe for single-atom transistors
Researchers at the National Institute of Standards and Technology (NIST) and their colleagues at the University of Maryland have developed a step-by-step recipe to produce single-atom transistors. (2020-05-11)

Plasma electrons can be used to produce metallic films
Computers, mobile phones and all other electronic devices contain thousands of transistors, linked together by thin films of metal. Scientists at Linköping University, Sweden, have developed a method that can use the electrons in a plasma to produce these films. (2020-05-07)

Outer tube-selectively boron-doped double-walled carbon nanotubes for thermoelectric applications
A research group led by Hiroyuki Muramatsu of Shinshu University succeeded in selectively doping the outer tube of DWNTs with boron. This significantly increased the electrical conductivity and the Seebeck coefficient which resulted in a highly enhanced thermoelectric performance of the DWNTs. This advancement allows for an extremely effective method to add functionality such as high electrical conductivity, chemical activation, improvement of thermoelectric properties while maintaining the function of the inner CNT. (2020-05-02)

Two steps closer to flexible, powerful, fast bioelectronic devices
Led by Biomedical Engineering Professor Dion Khodagholy, researchers have designed biocompatible ion-driven soft transistors that can perform real-time neurologically relevant computation and a mixed-conducting particulate composite that allows creation of electronic components out of a single material. These have promise for bioelectronic devices that are fast, sensitive, biocompatible, soft, and flexible, with long-term stability in physiological environments such as the human body. In particular, they could facilitate diagnosis and monitoring of neurological disease. (2020-04-24)

Substances trapped in nanobubbles exhibit unusual properties
Skoltech scientists modeled the behavior of nanobubbles appearing in van der Waals heterostructures and the behavior of substances trapped inside the bubbles. In the future, the new model will help obtain equations of state for substances in nano-volumes, opening up new opportunities for the extraction of hydrocarbons from rock with large amounts of micro- and nanopores. (2020-04-15)

Page 1 of 19 | 758 Results
   First   Previous   Next      Last is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to