Researchers developed a flexible OLED display that can be stretched to 1.6 times its original size while maintaining most of its luminescence. The technology uses MXene nanomaterial and an exciplex-assisted phosphorescent layer, improving the OLEDs' ability to efficiently produce light under strain.
A team of scientists at IISc has created tiny molecular devices that can be tweaked to perform diverse functions, including behavior as a memory unit, logic gate, selector, analog processor or electronic synapse. The devices' unique chemistry enables adaptability and the ability to store information, compute and adapt in real time.
Apple AirPods Pro (2nd Generation, USB-C)
Apple AirPods Pro (2nd Generation, USB-C) provide clear calls and strong noise reduction for interviews, conferences, and noisy field environments.
Researchers developed three-dimensionally shaped molecules containing an internal twist, exhibiting properties of organic semiconductors. The molecule was verified to act as an organic semiconductor in an organic field-effect transistor.
Researchers synthesized three porphyrin-based COF materials with tunable structural distortion, revealing correlations between linker distortion and material properties. The NN-Por-COF photocatalyst exhibits exceptional CO2 reduction performance under simulated industrial flue gas conditions.
Researchers developed highly conductive assemblies of gold complexes using ion-pairing, enabling solution-processed fabrication of conductive materials. The benzoporphyrin Au III complex expanded π-system increases dispersion forces, overcoming electrostatic repulsion between identically charged molecules.
Researchers have developed a chiral semiconductor that emits circularly polarised light, potentially improving OLED display efficiency and enabling quantum computing. The innovation uses molecular design tricks inspired by nature to create ordered spiral columns of semiconducting molecules.
Developing multifunctional bioelectronics for organoid interfacing has overcome conventional electronics' limitations. Flexible and stretchable electronics create organoid/electronics hybrids for chronically stable interfaces, enabling electrophysiological recording and multimodal profiling of single cells within 3D tissues.
SAMSUNG T9 Portable SSD 2TB
SAMSUNG T9 Portable SSD 2TB transfers large imagery and model outputs quickly between field laptops, lab workstations, and secure archives.
Researchers at Lancaster University are developing high-performance memory devices using self-assembled molecular technology to overcome the von Neumann bottleneck in computing. The Memristive Organometallic Devices (MemOD) project aims to deliver faster, more stable, and energy-efficient AI hardware.
Researchers at Chiba University have created an electronically controllable sliding molecular machine using a newly modified ferrocene molecule. The discovery overcomes the challenge of stabilizing the fragile ferrocene molecule on a flat surface, enabling precise control of its motion through electrical signals.
Scientists observe direct interactions between molecular rotations and electronic structures for the first time, shedding light on chemical reaction mechanisms. The study finds that Coriolis coupling, a previously unknown process, plays a dominant role in bond cleavage, lasting several hundred femtoseconds.
Materials scientists at Stanford employed a novel electron microscopic technique to study the structural microstructure and electrochemical properties of organic mixed ionic-electronic conductors, revealing how they maintain electronic functionality despite swelling by up to 300%.
Apple iPhone 17 Pro
Apple iPhone 17 Pro delivers top performance and advanced cameras for field documentation, data collection, and secure research communications.
Scientists developed a streamlined approach to assemble 2D molecular structures using a supramolecular scaffold, enhancing the efficiency of singlet fission and paving the way for advancements in solar cells. The new method created two distinct 2D self-assembling structures with high quantum yields, outperforming previous designs.
Researchers at Istituto Italiano di Tecnologia in Milan created an edible transistor using a toothpaste pigment, enabling the development of smart pills and potential healthcare applications. The device is made from ethylcellulose substrate with gold particles and operates at low voltage.
Researchers at PNNL create a uniform two-dimensional layer of silk protein fragments on graphene, enabling the design and fabrication of silk-based electronics. This biocompatible system has potential applications in wearable and implantable health sensors, as well as computing neural networks.
The researchers have successfully demonstrated quantum entanglement between electronic and motional states in their ultrafast quantum simulator, generating a new quantum simulation method including repulsive force between particles. This achievement is expected to improve the fidelity of two-qubit gate operations and realize socially u...
Nikon Monarch 5 8x42 Binoculars
Nikon Monarch 5 8x42 Binoculars deliver bright, sharp views for wildlife surveys, eclipse chases, and quick star-field scans at dark sites.
Researchers have demonstrated DNA-based technologies that can store, retrieve, compute, erase, and rewrite data. The technology uses soft polymer materials with unique morphologies to create a structure with high surface area for depositing DNA, enabling the full range of operations found in traditional electronic devices.
Researchers developed a new theoretical modelling technique to study molecular junctions, enabling significant light emission and high harmonic generation. The symmetries in configuration can enhance or suppress certain light frequencies, making it suitable for switch or amplifier applications.
Researchers found that folded peptides are more electrically conductive than their unfolded counterparts due to the formation of a specific secondary structure called the 3_10 helix. This discovery has implications for the design and development of molecular electronic devices.
Fluke 87V Industrial Digital Multimeter
Fluke 87V Industrial Digital Multimeter is a trusted meter for precise measurements during instrument integration, repairs, and field diagnostics.
Researchers at Argonne National Laboratory have developed biodegradable and recyclable luminescent polymers that can break down under heat or mild acid. The material showed a tenfold increase in light-emitting efficiency, making it suitable for applications such as displays and medical imaging.
Physicists have achieved a record-setting level of electron mobility in a thin film of ternary tetradymite, a class of mineral found in gold and quartz deposits. The material's high electron mobility makes it suitable for efficient thermoelectric devices that convert waste heat into electricity.
Scientists have developed a new approach to designing materials with useful electronic and optical properties. By stacking antiaromatic units using van der Waals interactions, researchers created highly conductive liquid crystals. This breakthrough could lead to advances in organic electronics, optoelectronics, and sensing devices.
Researchers from Tokyo Institute of Technology experimentally revealed that high-density Ca introduction enhances superconductivity in graphene-calcium compounds through confinement epitaxy, leading to increased critical temperatures. This breakthrough could enable the development of C6CaC6 superconductors with wide applicability in qu...
Researchers at the University of Washington have solved a long-standing chemical mystery in organic electrochemical transistors (OECTs), which allow current to flow in devices like implantable biosensors. The study reveals that OECTs turn on via a two-step process, causing a lag, and off through a simpler one-step process.
Meta Quest 3 512GB
Meta Quest 3 512GB enables immersive mission planning, terrain rehearsal, and interactive STEM demos with high-resolution mixed-reality experiences.
Researchers led by POSTECH Professor Yong-Young Noh discovered that tellurium oxide can function as a p-type semiconductor in oxygen-deficient environments. They successfully engineered high-performance amorphous p-type oxide Thin-Film Transistors (TFTs) with exceptional hole mobility and on/off current ratio.
Scientists at POSTECH create conducting polymers with exceptional electrical conductivity, rivaling graphene's performance. The breakthrough achieves ultrafast electron mobility and long phase coherence length, overcoming a major challenge in organic semiconductors.
Researchers visualize chiral interface state at atomic scale for the first time, allowing on-demand creation of conducting channels. The technique has promise for building tunable networks of electron channels and advancing quantum computing.
Garmin GPSMAP 67i with inReach
Garmin GPSMAP 67i with inReach provides rugged GNSS navigation, satellite messaging, and SOS for backcountry geology and climate field teams.
Researchers at GIST designed two novel polymers to explore the properties of organic mixed ionic–electronic conductors. The polymers exhibited unique molecular orientation-dependent transient behaviors in organic electrochemical transistors.
Researchers create supramolecular ink, a game-changing technology for OLED display manufacturing, enabling more affordable and environmentally sustainable products. The material can also be used in wearable devices, luminescent art, and 3D printing.
Scientists have developed a new biocompatible material that can conduct electricity efficiently in wet environments and interact with biological media. The modified PEDOT:PSS enables the creation of organic electrochemical transistors (OECTs) with high performance and excellent characteristics.
Researchers at UNIST have achieved a significant breakthrough in organic semiconductor synthesis by synthesizing a novel molecule called BNBN anthracene. This derivative exhibits unique properties, including precise modulation of electronic properties without structural changes.
Sky & Telescope Pocket Sky Atlas, 2nd Edition
Sky & Telescope Pocket Sky Atlas, 2nd Edition is a durable star atlas for planning sessions, identifying targets, and teaching celestial navigation.
A team of researchers developed a hexagonal BaTiO3−xNy oxynitride catalyst with basicity comparable to that of superbases. The substitution of nitride ions and oxygen vacancies into face-sharing Ti2O9 dimer sites increases the electron density, resulting in a highly basic catalyst.
Researchers at the University of Manchester have discovered a way to accelerate proton transport through graphene using light. This breakthrough could lead to more efficient hydrogen fuel cells and solar water-splitting devices.
Researchers have developed a new self-assembling nanosheet that can create functional and sustainable nanomaterials for various applications. The material is recyclable and can extend the shelf life of consumer products, enabling a sustainable manufacturing approach.
Davis Instruments Vantage Pro2 Weather Station
Davis Instruments Vantage Pro2 Weather Station offers research-grade local weather data for networked stations, campuses, and community observatories.
Jinglei Ping, a UMass Amherst engineering professor, has received a $1.9 million grant to investigate a new method of regulating exosome traffic using electronic signals. This approach aims to control cell communication in cancer and heart disease research.
Researchers at Curtin University have created a piezoresistor the size of a human hair, revolutionizing chemical and biosensors. This breakthrough enables detection of diseases through molecular shape changes, offering new possibilities for health monitoring devices.
Researchers have developed a novel supramolecular memristor based on bistable [2]catenanes, which can achieve high-density storage and non-volatile memory capabilities. The memristors demonstrated at least 1000 erase-read-write cycles and switching times comparable to commercial inorganic memristors.
Anker Laptop Power Bank 25,000mAh (Triple 100W USB-C)
Anker Laptop Power Bank 25,000mAh (Triple 100W USB-C) keeps Macs, tablets, and meters powered during extended observing runs and remote surveys.
A study comparing PI-RADS 2.0 and 2.1 found no significant differences in upgrade (29% vs. 22%) or downgrade (19% vs. 21%) rates from targeted biopsy to radical prostatectomy, suggesting no improvement in prostate cancer grade assessment with the latest PI-RADS update.
The study presents a pioneering detection tool that combines molecular biology and electronics to identify various pathogenic agents. The technology has demonstrated remarkable sensitivity detecting as few as 10 target molecules and rapid results under one hour.
Researchers have developed a new way to identify chiral molecules using light, which vastly improves detection efficiency. The new method uses lasers to drive chiral electronic currents in molecules, causing one version to emit bright light while its counterpart remains dark.
Researchers discovered a close relationship between nuclear and electron dynamics, challenging the Born-Oppenheimer approximation. This breakthrough could lead to new ways to control and exploit molecular properties for solar energy conversion, quantum information science, and more.
GoPro HERO13 Black
GoPro HERO13 Black records stabilized 5.3K video for instrument deployments, field notes, and outreach, even in harsh weather and underwater conditions.
Researchers have developed a new material for single-molecule electronic switches, which can vary current at the nanoscale in response to external stimuli. The ladder-type molecular structure enhances stability and makes it promising for use in single-molecule electronics applications.
Scientists have developed a new dynamic probe to measure electric interactions between molecules and the environment. Using ultrashort terahertz pulses, they mapped the optical absorption of molecules in an external electric field, revealing the strength and dynamics of these forces.
Researchers used microscopy techniques to study polyfluorene chains and found that intra-chain aggregation causes green emission, which disappears when the chain unfolds. The team also discovered a novel optomechanical force acting on some chains, originating from van der Waals interactions and excitonic coupling.
Apple iPad Pro 11-inch (M4)
Apple iPad Pro 11-inch (M4) runs demanding GIS, imaging, and annotation workflows on the go for surveys, briefings, and lab notebooks.
A team of researchers at Istituto Italiano di Tecnologia has developed a totally edible and rechargeable battery cell, utilizing riboflavin and quercetin as anode and cathode. The battery can provide current for small electronic devices and may have applications in health diagnostics, food quality monitoring, and edible soft robotics.
Researchers at Argonne National Laboratory and University of Chicago developed a hybrid simulation process using IBM quantum computers to solve electronic structure problems. The new method uses classical processing to mitigate noise generated by the quantum computer, paving the way for future improvements.
Researchers developed a new tool to disentangle electronic states in layered quantum materials, revealing surprising results that defy theoretical predictions. By analyzing vibrations and energy measurements, scientists can 'see' how electrons move through the layers.
Cooperative transitions occur when molecules shift their structure in synchrony, like a row of dominoes flowing seamlessly to the floor. The collaborative method is fast, energy-efficient, and easily reversible, helping living systems operate quickly and efficiently.
AmScope B120C-5M Compound Microscope
AmScope B120C-5M Compound Microscope supports teaching labs and QA checks with LED illumination, mechanical stage, and included 5MP camera.
A team of researchers from Japan has developed a single purely organic neutral molecule with an incomplete oxidation state for the first time. The new molecule exhibits multi-step phase transitions and crossover caused by intra- and intermolecular electronic interactions, leading to unique strongly correlated electron properties.
Researchers have developed novel organometallic molecular junctions that exhibit unprecedented thermoelectric performance, achieving a Seebeck coefficient of 73 μV/K. These results are promising for the development of nanoscale semiconductors and efficient thermoregulation.
A high-precision 3D printing method has been developed to produce polarisation-encoded 3D anticounterfeiting labels with increased data encryption density. The new label can encrypt more digital information than a traditional 2D label.
Researchers at NIST created grids of quantum dots to study electron behavior in complex materials. The grids provided ideal conditions for electrons to behave like waves or get trapped in individual dots.
Researchers at the Max Born Institute have used novel ultrashort soft X-ray spectroscopy to study the fate of molecular nitrogen when an electron is kicked out. They found that the B state has a similar degree of excitation as the X state, contradicting previous models. Instead, a coherent interplay between light fields enables lasing ...
Kestrel 3000 Pocket Weather Meter
Kestrel 3000 Pocket Weather Meter measures wind, temperature, and humidity in real time for site assessments, aviation checks, and safety briefings.
Scientists at Kyushu University have developed organic molecules that align in the same direction, creating a 'giant surface potential' when evaporated onto a surface. This alignment leads to a significant electric field, which can improve OLED efficiency and open new routes for realizing devices that convert vibrations into electricity.
A research group from Tokyo University of Science has discovered molecular features that govern the filling process at nanoscales, enabling finer resolutions in ultraviolet nanoimprint lithography. The findings provide valuable insights for guiding the selection and design of optimized resists for sub-10 nm resolution.
Researchers have developed instruments for single-molecule electrochemistry and spectroscopy, aiming to design and synthesize materials with chemistry, physics, and engineering at the atomic scale. They discuss challenges and opportunities in functionalizing molecular junctions and forming stable molecular electronic devices.
Apple Watch Series 11 (GPS, 46mm)
Apple Watch Series 11 (GPS, 46mm) tracks health metrics and safety alerts during long observing sessions, fieldwork, and remote expeditions.
Researchers develop technique to control pH at microsites, enabling high-throughput biomolecular synthesis and enzymatic DNA synthesis. This allows for increased experimental throughput and speeding up processes in DNA synthesis.
Columbia researchers built a 2.6nm-long single molecule wire that exhibits an unusual increase in conductance as the wire length increases and has quasi-metallic properties. The breakthrough overcomes the exponential-decay rule, enabling electronic devices to become even tinier.
Researchers have developed a new measurement method in molecular electronics that enables the exchange of molecules at will. This allows for the measurement of conductivities of many different molecules in succession. The method has potential applications in biosensing and advanced molecular computing.
A cross-disciplinary team at the University of Illinois used automated synthesis to discover a new mechanism for high conductance in organic electronics applications. The technology rapidly scanned through a library of molecules and uncovered unexpectedly high conductance, dependent on concentration and surface adsorption.
Aranet4 Home CO2 Monitor
Aranet4 Home CO2 Monitor tracks ventilation quality in labs, classrooms, and conference rooms with long battery life and clear e-ink readouts.
Researchers developed a full-function bioelectronic photocell using genetically modified proteins attached to a carbon nanotube. The system can change its electronic properties in response to light, operating as a spotlight or memory cell. This discovery opens the door to environmentally friendly electronic elements, memory devices, an...