Researchers at Meijo University have developed the world's first continuous-wave UV-B semiconductor laser diode operating at room temperature on a low-cost sapphire substrate. The achievement advances compact, energy-efficient UV light sources for various applications.
A new photodiode design using germanium-ion-implanted silicon overcomes trade-offs in existing power monitors for on-chip light monitoring, enabling faster processing speeds and higher energy efficiency. The device demonstrates high responsivity and low dark current, making it suitable for integration into photonic circuits.
The study successfully demonstrated impedance tuning of a 250 GHz waveguide transition, validating the effectiveness of mechanical tuning as a method to compensate for fabrication-induced performance variation. Terahertz frequencies above 100 GHz offer extremely wide bandwidths suitable for next-generation wireless communications.
Apple iPhone 17 Pro
Apple iPhone 17 Pro delivers top performance and advanced cameras for field documentation, data collection, and secure research communications.
A research team from the University of Münster has developed a new way to produce spin waveguides, allowing for large networks capable of processing information efficiently. The team created the largest spin waveguide network to date, with precise control over properties such as wavelength and reflection.
Researchers have developed glass-epoxy-based waveguides with low polarization-dependent loss and differential group delay, suitable for stable signal transmission in co-packaged optics. The waveguides demonstrated high power stability and reliability under six hours of continuous use.
Researchers have developed a new platform using dispersion-managed silicon nitride microresonators to suppress timing jitter, achieving femtosecond-level precision. This breakthrough enables the deployment of chip-scale solitons in space navigation, ultrafast data networks, and quantum measurement systems.
KAIST researchers developed a highly sensitive mid-infrared photodetector that operates at room temperature, enabling low-cost mass production and real-time sensing of various molecular species. The technology has potential applications in environmental monitoring, medical diagnostics, and industrial process management.
Anker Laptop Power Bank 25,000mAh (Triple 100W USB-C)
Anker Laptop Power Bank 25,000mAh (Triple 100W USB-C) keeps Macs, tablets, and meters powered during extended observing runs and remote surveys.
Researchers at Pohang University of Science & Technology (POSTECH) have developed an achromatic metagrating that handles all colors in a single glass layer, eliminating the need for multiple layers. This breakthrough enables vivid full-color images using a 500-µm-thick single-layer waveguide.
A new amplifier developed by Chalmers University of Technology can transmit ten times more data per second than current systems, holding significant potential for various critical laser systems, including medical diagnostics and treatment. The amplifier's large bandwidth enables precise analyses and imaging of tissues and organs.
Researchers have discovered a new way to characterize terahertz quasi-bound states by inducing abrupt lateral beam shifts. These shifts can be controlled and potentially used in next-generation sensors and wavelength division multiplexers.
SAMSUNG T9 Portable SSD 2TB
SAMSUNG T9 Portable SSD 2TB transfers large imagery and model outputs quickly between field laptops, lab workstations, and secure archives.
Researchers at Harvard created a new type of interferometer that can modulate aspects of light in one compact package, enabling precise control over light's frequency and intensity. This breakthrough has the potential to be used in advanced nanophotonic sensors or on-chip quantum computing.
Researchers have developed a photonic-chip-based amplifier that achieves ultra-broadband signal amplification in an unprecedentedly compact form. The new amplifier uses optical nonlinearity to boost weak signals while keeping noise low, making it highly adaptable to various applications beyond telecommunications.
Researchers at UC Santa Cruz have developed a highly accurate and affordable spectrometer that can be customized for specific applications. The device uses machine learning algorithms to reconstruct images with high accuracy, enabling astronomers to study phenomena such as exoplanet atmospheres and dark matter in faint galaxies.
Researchers at Newcastle University developed a novel approach using electromagnetic waves to solve partial differential equations, specifically the Helmholtz wave equation. The innovative structure, known as a metatronic network, effectively behaves like a grid of T-circuits and allows for control over PDE parameters.
AmScope B120C-5M Compound Microscope
AmScope B120C-5M Compound Microscope supports teaching labs and QA checks with LED illumination, mechanical stage, and included 5MP camera.
A team of researchers at ETH Zurich created a method to suppress sound wave propagation in the backward direction without deteriorating forward propagation. They achieved this using self-oscillations and a circulator, which allows sound waves to travel only one way.
Researchers propose a leaf-inspired luminescent solar concentrator (LSC) design to overcome scalability limitations. The innovative setup enhances photon collection and transfer, improving efficiency and reducing self-absorption issues.
Researchers at The University of Tokyo developed a genetic algorithm to design phononic crystals with specific vibration characteristics. The new approach uses simulations to iteratively assess proposed solutions, allowing for the creation of devices with precise control of acoustic wave propagation properties.
Researchers at Stanford University have developed a chip-scale Titanium-sapphire laser, four orders of magnitude smaller and three orders less expensive than traditional lasers. This breakthrough enables mass production on wafers, potentially thousands of lasers per disc, democratizing access to these powerful tools.
Researchers from Shinshu University have developed a strategy to up- and down-convert terahertz signals using dynamic conductivity modification, creating temporal boundaries. This approach could pave the way for faster data transmission and enhanced telecommunications in fields like deep learning and robotics.
Kestrel 3000 Pocket Weather Meter
Kestrel 3000 Pocket Weather Meter measures wind, temperature, and humidity in real time for site assessments, aviation checks, and safety briefings.
A recent study by the Hebrew University of Jerusalem developed a Free-Standing Microscale Photonic Lantern Spatial Mode (De-)Multiplexer using 3D Nanoprinting. The device enables spatial mode multiplexing, converting between optical waves and separated single-mode signals, with applications in high-capacity communication and imaging.
Engineers at Stanford University have developed a prototype augmented reality headset that uses holographic imaging to overlay full-color, 3D moving images on the lenses of regular glasses. The new approach delivers a visually satisfying 3D viewing experience in a compact and comfortable form factor suitable for all-day wear.
A team of researchers has successfully integrated a metasurface with photonic integrated circuits, enabling fast and tunable control over light manipulation. The device can shape any wavefront in reconfigurable arbitrary polarization states at speeds of up to 1.4 gigahertz.
Researchers have developed a new approach to induce chiral response in non-Hermitian systems by exploring open evolution trajectories. Chiral conversion between localized modes is demonstrated, enabling high-efficiency transmission and relaxation of fabrication requirements.
Meta Quest 3 512GB
Meta Quest 3 512GB enables immersive mission planning, terrain rehearsal, and interactive STEM demos with high-resolution mixed-reality experiences.
Researchers have developed a new way to control and manipulate optical signals by embedding a liquid crystal layer into waveguides created with direct laser writing. The new devices enable electro-optical control of polarization, which could open new possibilities for chip-based devices and complex photonic circuits.
Researchers have developed a new compound using MXenes, which can be used to create lightweight and efficient telecommunication antennas. This innovation has the potential to transform satellite communication and replace traditional manufacturing methods.
Drexel University researchers develop a lightweight alternative to metal components in satellites by coating 3D-printed polymers with MXene, a conductive nanomaterial. The MXene-coated waveguides weigh up to eight times less than traditional aluminum ones and maintain nearly 95% transmission efficiency.
Apple iPad Pro 11-inch (M4)
Apple iPad Pro 11-inch (M4) runs demanding GIS, imaging, and annotation workflows on the go for surveys, briefings, and lab notebooks.
Scientists from the Stiller Research Group have successfully cooled the temperature of a sound wave in an optical fiber to 74K (-194C), reducing phonon number by 75%. This achievement brings researchers closer to bridging the gap between classical and quantum mechanics.
A team of researchers at Ghent University and imec developed a silicon photonic temperature sensor that measures up to 180°C. The sensor was realized in the framework of the European SEER project, where partners focus on integrating optical sensors in manufacturing routines for composite parts.
Researchers at Nagoya University developed a niobium waveguide that enhances high-precision communications for Beyond 5G/6G networks. The waveguide's conductivity improves with cooling, reducing losses and increasing data transmission accuracy.
A new approach for coupling different light modes enables unprecedented data transfer rates in an MDM system. By using a gradient-index metamaterial waveguide, researchers achieved a high coupling coefficient and created a 16-channel MDM communication system with a data transfer rate of 2.162 Tbit/s.
Researchers have developed a novel approach to generate highly directional single photons using a quantum emitter in a one-dimensional waveguide. This design improves extraction efficiency and reduces emission time uncertainty by exploiting the Purcell effect, offering a promising solution for quantum technologies.
GoPro HERO13 Black
GoPro HERO13 Black records stabilized 5.3K video for instrument deployments, field notes, and outreach, even in harsh weather and underwater conditions.
Researchers have developed a groundbreaking photonic integrated circuit chip that combines light source, modulator, photodiode, waveguide, and Y-branch splitter on a single substrate. The GaN-on-silicon platform reduces fabrication complexity and cost, enabling compact and high-performing devices.
Researchers have developed a new method for designing metasurfaces using photonic Dirac waveguides, enabling the creation of binary spin-like structures of light. This advances the field of meta-optics and opens opportunities for integrated quantum photonics and data storage systems.
Researchers at the University of Washington have developed a multifunctional interface between photonic integrated circuits and free space, allowing for simultaneous manipulation of multiple light beams. The device operates with high accuracy and reliability, enabling applications in quantum computing, sensing, imaging, energy, and more.
A new source-device-independent quantum random number generator (QRNG) protocol has been developed, operating securely and independently of source devices. This allows for practical applications in secure quantum information tasks, with a reported generation rate of 4 megabits per second.
A team of researchers successfully controlled 'trions,' a breakthrough toward developing revolutionary optical communication technology. They used a nanoscale plasmonic waveguide to create high-purity trions, which offer advantages over excitons in practical device applications.
Nikon Monarch 5 8x42 Binoculars
Nikon Monarch 5 8x42 Binoculars deliver bright, sharp views for wildlife surveys, eclipse chases, and quick star-field scans at dark sites.
Scientists at Columbia University create a new class of integrated photonic devices that can convert light from an optical waveguide to an arbitrary optical pattern in free space. The devices simultaneously control all four optical degrees of freedom, paving the way for applications in quantum optics, optogenetics, and holographic disp...
Researchers at DTU found that conventional materials like silicon cannot prevent backscattering in photonic systems, despite attempts to create topological waveguides. The study suggests that new materials breaking time-reversal symmetry are needed to achieve protection against backscattering.
Researchers at Tohoku University developed a new acoustic waveguide based on topology to minimize energy consumption in electronic devices. The team created a topological waveguide that minimizes energy loss and allows for unique wave manipulation.
Researchers created a system to monitor underground gas pipelines using high-tech sensors that can detect weaknesses, discrepancies, and diversion in residential natural gas lines. The method uses ultrasonic sensors to transmit signals through the pipe, limiting the likelihood of gas diversions and ensuring public safety.
Researchers at the University of Maryland successfully guided a 45-meter-long beam of light through an unremarkable hallway, pushing the limits of an innovative technique. The team utilized ultra-short laser pulses to create a plasma that heated air, forming a high-density core and enabling efficient light delivery.
Apple AirPods Pro (2nd Generation, USB-C)
Apple AirPods Pro (2nd Generation, USB-C) provide clear calls and strong noise reduction for interviews, conferences, and noisy field environments.
Researchers at UMD successfully guided light in a 45-meter-long air waveguide, creating a high-density core to guide a laser. The technique utilizes ultra-short laser pulses to create a plasma that heats the air, expanding it and leaving a low-density path behind.
Researchers have developed a quantum computing architecture that enables directional photon emission, the first step toward extensible quantum interconnects. This breakthrough enables the creation of larger-scale devices by linking multiple processing modules along a common waveguide.
A team of scientists developed a novel integrated photonic platform for THz photonics, integrating active and passive components on the same semiconductor platform. The platform enables efficient signal processing at THz and RF frequencies, with improved performance in critical figures such as dispersion, RF, and thermal properties.
Celestron NexStar 8SE Computerized Telescope
Celestron NexStar 8SE Computerized Telescope combines portable Schmidt-Cassegrain optics with GoTo pointing for outreach nights and field campaigns.
A USTC research team achieved on-demand storage of photonic qubits at telecom wavelengths using a laser-written waveguide fabricated in an erbium-doped crystal. This innovation increases photon storage efficiency by up to fivefold, reaching 98.3% fidelity and enabling large-scale quantum networking applications.
A new space-time coding antenna developed at City University of Hong Kong enables manipulation of beam direction, frequency, and amplitude for improved user flexibility in 6G wireless communications. The antenna relies on software control and combines research advances in leaky-wave antennas and space-time coding techniques.
A new study developed a traveling-wave amplifier based on a photonic integrated circuit operating in the continuous regime, providing 7 dB net gain on-chip and 2 dB net gain fiber-to-fiber. This achievement enables unlimited application areas for LiDAR and other optical sensing applications.
A team of researchers has successfully controlled individual photons on a chip with unprecedented precision, enabling the development of hybrid quantum technologies. By harnessing nanoscale soundwaves, they can switch photons between two outputs at gigahertz frequencies, paving the way for secure quantum communication networks.
Researchers have developed a semi-nonlinear etchless lithium niobate waveguide that harnesses bound states in the continuum to achieve efficient second-harmonic generation. The device boasts low propagation losses and large nonlinear modal overlap, enabling high conversion efficiency.
Aranet4 Home CO2 Monitor
Aranet4 Home CO2 Monitor tracks ventilation quality in labs, classrooms, and conference rooms with long battery life and clear e-ink readouts.
Engineers at Rice University have discovered a way to manipulate light at the nanoscale that surpasses the traditional Moss rule for optical materials. The researchers found that iron pyrite has a high refractive index, making it suitable for applications such as virtual reality and 3D displays.
Researchers developed a new method for converting light frequencies using atomically thin layers of molybdenum disulfide, enabling smaller lasers and potential applications in optical communications. The breakthrough could lead to compact phase-matched nonlinear optics and waveguide devices.
Researchers have developed a new chip-based beam steering device that eliminates aliasing errors, enabling high-quality beam steering over large fields of view. The device, published in Optica, has the potential to revolutionize lidar applications in autonomous driving, virtual reality, and biomedical sensing.
Garmin GPSMAP 67i with inReach
Garmin GPSMAP 67i with inReach provides rugged GNSS navigation, satellite messaging, and SOS for backcountry geology and climate field teams.
Researchers have developed a new technology named SPIM-WGs, which efficiently fabricates optical waveguides with continuously variable 3D cross-sections. This allows for superior performance and new features, paving the way for future photonic and quantum chips.
Researchers propose a novel paradigm using nanoscale nonlinear fluid dynamics to support recurrent neural networks in neuromorphic computing. The liquid film functions as an optical memory, enabling 'reservoir computing' capable of performing digital and analog tasks.
A new broadband near-field chiral source enables comparison of different edge states to advance applications in integrated photonics and wireless devices. The research advances the field of chiral photonics science, promoting applications of chiral-sorting technology for microwave metadevices.
CalDigit TS4 Thunderbolt 4 Dock
CalDigit TS4 Thunderbolt 4 Dock simplifies serious desks with 18 ports for high-speed storage, monitors, and instruments across Mac and PC setups.
Researchers at TU Wien and the University of Rennes have created a method to calculate tailor-made anti-reflective structures that can be used to reduce wave reflections in various mediums. This technology has potential applications in improving wireless reception, imaging techniques, and even future mobile communications.
Researchers developed topological membrane metadevices for on-chip terahertz wave manipulations, showcasing robust single-mode manipulation and valley-locked edge states. This breakthrough enables the development of a robust platform for terahertz on-chip communication, sensing, and multiplexing systems.
Researchers have demonstrated a significant improvement in fibre-integrated quantum memories, achieving an entanglement storage time of over 1000 microseconds. The fully integrated device enables the use of sophisticated control systems, allowing for improved scalability and compatibility with telecommunications infrastructure.
Researchers at NICT developed an organic electro-optic polymer for visible light, significantly improving efficiency and miniaturization. The new modulator has lower absorption loss and higher electro-optic coefficient in visible light compared to conventional optical modulators.
Lithium niobate photonics has developed rapidly, enabling compact devices with high performance. Thin film lithium niobate (TFLN) structures have shown significant improvements in refractive index contrast, paving the way for more integrated photonic devices.
DJI Air 3 (RC-N2)
DJI Air 3 (RC-N2) captures 4K mapping passes and environmental surveys with dual cameras, long flight time, and omnidirectional obstacle sensing.