Researchers at Chalmers University of Technology have achieved a new breakthrough in structural battery composites, a material that stores energy while also carrying mechanical loads. This innovation has the potential to make electric vehicles lighter and more efficient, as well as be applied to aircraft.
A new plant-based hydrogel has been developed to tackle the problem of metallic zinc growing needle-like dendrites that short-circuit cells within a few hundred cycles. The cellulose-nanofiber dual network boosts ion flow and mechanical strength, delivering a cheap and biodegradable electrolyte.
Researchers developed an anode-free lithium metal battery that delivers nearly double driving range using the same battery volume. The battery's volumetric energy density of 1,270 Wh/L is nearly twice that of current lithium-ion batteries used in electric vehicles.
SAMSUNG T9 Portable SSD 2TB
SAMSUNG T9 Portable SSD 2TB transfers large imagery and model outputs quickly between field laptops, lab workstations, and secure archives.
A new hybrid anode technology has been developed that delivers higher energy storage while reducing thermal runaway and explosion risks. The 'magneto-conversion' strategy applies an external magnetic field to ferromagnetic manganese ferrite conversion-type anodes, promoting uniform lithium ion transport and preventing dendrite formation.
Researchers from POSTECH found that aluminum reduces internal structural distortion in cathodes, preventing oxygen holes and shortening battery life. By adding a small amount of aluminum, the team extends battery lifespan while improving energy density.
Researchers discovered that peat-based iron-nitrogen-carbon catalysts exhibit exceptional efficiency and selectivity in oxygen reduction reactions. The microstructure of these catalysts plays a crucial role in promoting the desired electrochemical reactions.
Apple iPhone 17 Pro
Apple iPhone 17 Pro delivers top performance and advanced cameras for field documentation, data collection, and secure research communications.
A team of engineers at Rice University has developed a cleaner approach to recycling lithium-ion battery waste by recharging the cathode materials. The process produces high-purity lithium hydroxide with minimal energy consumption, making it a promising solution for sustainable battery production.
Researchers have created a novel three-dimensional porous structure that improves the lifespan and safety of lithium-metal batteries. The design allows for uniform lithium deposition, reducing the risk of internal short-circuits or explosions.
A new kind of electrochemical system combines two chemical reactions, oxidation and hydrogenation, to produce renewable plastics and fine chemicals. The process achieves full conversion of plant-based molecules into the desired products with high efficiency and stability.
Researchers developed a new diagnostic metric called State of Mission (SOM) to predict EV battery performance based on both battery data and environmental factors. SOM significantly reduced prediction errors compared to traditional methods.
Davis Instruments Vantage Pro2 Weather Station
Davis Instruments Vantage Pro2 Weather Station offers research-grade local weather data for networked stations, campuses, and community observatories.
A team of researchers has developed a new material that enhances the capacity and stability of lithium-sulphur batteries by trapping polysulphides in open pores, reducing battery life shortening. The material improves Li-S battery performance to over 1,500 cycles with minimal capacity loss.
Researchers at Uppsala University developed an AI model that can accurately predict battery ageing, leading to longer life and enhanced safety for electric vehicle batteries. The model reduces the need for sensitive vehicle data and provides a detailed picture of chemical processes inside batteries.
A new Stanford University study finds that most US households (60%) can reduce their electricity costs by 15% and weather local or regional blackouts with solar-battery systems. The systems would meet about half of the household's electricity needs on average, allowing them to save money or see no rise in costs.
Researchers have developed solid-state batteries that can charge in a fraction of the time and pack more energy into less space than traditional lithium-ion versions. These batteries use stable solid materials instead of liquid electrolytes, enabling faster charging, reduced safety risks, and improved efficiency.
Researchers from the University of Oklahoma have made significant breakthroughs in protonic ceramic electrochemical cells (PCECs), addressing challenges in manufacturing and efficiency. A new approach eliminates cerium-based materials, allowing pure barium zirconate-based electrolytes to remain stable at record-low temperatures.
GQ GMC-500Plus Geiger Counter
GQ GMC-500Plus Geiger Counter logs beta, gamma, and X-ray levels for environmental monitoring, training labs, and safety demonstrations.
Researchers at POSTECH have developed an interlocked electrode-electrolyte system that forms covalent chemical bonds between the electrode and electrolyte, maintaining long-term stability. The IEE-based pouch cell demonstrated significantly higher energy density compared to traditional lithium-ion batteries.
Manuel Souto received the Young Researcher Award from the Spanish Royal Society of Chemistry for his leadership of the ElectroMolMat research group at CiQUS. The award recognizes his outstanding professional achievements and contributions to electroactive molecular materials.
Researchers have developed a new sensor to detect hazardous gas leaks in lithium-ion batteries, which could prevent catastrophic failures and enhance the reliability of battery-powered technologies. The sensor detects trace amounts of ethylene carbonate vapour, targeting potential battery failures before they escalate into disasters.
A collaboration between Japanese, Korean, and American researchers found that larger cations suppress platinum dissolution compared to smaller cations. The study reveals a 'cation effect' influencing electrode durability.
University of Missouri researchers developed a solution to improve solid-state battery performance by understanding the root cause of issues. They used 4D STEM to examine atomic structures without disassembling batteries, ultimately determining the interphase layer was the culprit.
AmScope B120C-5M Compound Microscope
AmScope B120C-5M Compound Microscope supports teaching labs and QA checks with LED illumination, mechanical stage, and included 5MP camera.
Researchers at Case Western Reserve University have developed high-performance, low-cost zinc-sulfur batteries with enhanced energy capacity, improved conductivity and stability. These advancements address long-standing safety concerns and enable smaller, longer-lasting designs.
Researchers at Worcester Polytechnic Institute have discovered a new method to create high-performance alkaline batteries using iron and silicate. The process suppresses hydrogen gas generation, improving the energy efficiency of battery systems.
Researchers from Tokyo Metropolitan University developed a new electrochemical cell that converts bicarbonate solution into formate ions with high selectivity and efficiency. The cell boasts unrivalled performances rivaling energy-hungry gas-fed methods, promising to have a significant impact on climate change technology.
Celestron NexStar 8SE Computerized Telescope
Celestron NexStar 8SE Computerized Telescope combines portable Schmidt-Cassegrain optics with GoTo pointing for outreach nights and field campaigns.
A new type of gel developed by MLU chemists improves the safety and service life of lithium-ion batteries. Initial lab studies show that it also enhances battery performance, remaining stable at over five volts.
A team of scientists and engineers designed an electrolyte that maintains high power delivery during charging and discharging cycles. This innovation addresses the key challenge of low power delivery at landing stages in electric aircraft, where batteries are not fully charged.
Researchers developed a technique to study electrochemical processes at the atomic level, revealing unexpected transformations in a popular copper catalyst. The technique, called polymer liquid cell (PLC), enables scientists to observe composition changes during reactions in real time.
Researchers at RIKEN have developed a new catalyst that reduces the amount of iridium required for hydrogen production, achieving 82% efficiency and sustaining production for over 4 months. The breakthrough could revolutionize ecologically friendly hydrogen production and pave the way for a carbon-neutral energy economy.
Researchers at RIKEN have improved the stability of a green hydrogen production process by using a custom-made catalyst, increasing its lifetime by almost 4,000 times. The breakthrough uses earth-abundant materials, making it more sustainable and potentially cost-effective for widespread industrial use.
CalDigit TS4 Thunderbolt 4 Dock
CalDigit TS4 Thunderbolt 4 Dock simplifies serious desks with 18 ports for high-speed storage, monitors, and instruments across Mac and PC setups.
The USTC team created a rechargeable, non-aqueous manganese metal battery with halogen-mediated electrolyte, achieving high Coulombic and Faraday efficiencies. The battery demonstrated stable cycling for over 700 hours and showed excellent multiplicity performance.
Researchers have deciphered the key pathways of the sulfur reduction reaction in lithium-sulfur batteries, identifying dominant molecular pathways and critical roles of electrocatalysis. This breakthrough could lead to improved battery performance, reduced costs, and increased energy storage capacity.
Researchers successfully improved lithium metal battery charging rates by adding a cesium nitrate compound, while maintaining long cycle life. The new findings challenge conventional beliefs about effective interphase components and contribute to the development of high-energy density batteries.
Researchers at Tokyo University of Science developed nanostructured hard carbon electrodes using inorganic zinc-based compounds, which deliver unprecedented performance and significantly increase the capacity of sodium- and potassium-ion batteries. The new electrodes improve energy density by 1.6 times compared to existing technologies.
Researchers at MIT and partners have discovered that variations in lithium ion flow rates are correlated with differences in carbon coating thickness, which could lead to improved battery efficiency. This technique allows for the extraction of insights from nanoscale data, offering potential applications beyond battery technology.
Creality K1 Max 3D Printer
Creality K1 Max 3D Printer rapidly prototypes brackets, adapters, and fixtures for instruments and classroom demonstrations at large build volume.
Researchers have developed an electrochemical cell that can easily capture and release CO2, a major contributor to industrial emissions. The device operates at room temperature and requires less energy than traditional methods, making it a promising alternative for industries that struggle with electrification.
Researchers from The University of Warwick and The University of Manchester have solved the long-standing puzzle of why graphene is permeable to protons. Protons are strongly accelerated around nanoscale wrinkles in perfect graphene crystals, which could lead to more sustainable hydrogen production.
Researchers at Worcester Polytechnic Institute discovered a new redox chemistry empowered by chloride ions for the development of seawater green batteries. This technology leverages abundant elements such as iron oxides and hydroxides, potentially repurposing iron rust waste materials for modern energy storage.
Researchers at Graz University of Technology are developing a sustainable electricity storage system using AI optimisation and vanillin as the storage medium. The project aims to create an environmentally friendly system with high efficiency and safety for industry and renewable energy applications.
Aranet4 Home CO2 Monitor
Aranet4 Home CO2 Monitor tracks ventilation quality in labs, classrooms, and conference rooms with long battery life and clear e-ink readouts.
Researchers developed a free-standing LiPON film that promotes uniformly dense lithium metal electrochemical deposition under zero external pressure, opening the door to lithium metal solid-state batteries. The new approach yields fresh insights into LiPON's properties and interfaces.
Researchers at Shibaura Institute of Technology have developed a faster way to synthesize CoSn(OH)6, a powerful catalyst required for high-energy lithium–air batteries. The new method uses solution plasma-based synthesis and achieves highly crystalline CSO crystals with improved catalytic properties.
Researchers at the University of Illinois created a new system for desalination using microchannels in Prussian blue electrodes. The study found that adding these channels increased seawater desalination efficiency by five times, reaching salinity levels below freshwater thresholds.
Researchers investigated LECs made from Super Yellow and found that increasing voltage applied resulted in increased emission and ESR signals. Theoretical analysis showed holes and electrons being electrochemically doped into the material, leading to a correlation with luminance increase.
Researchers from GIST have developed a hydrotropic-supporting electrolyte to enhance the solubility of organic redox molecules in aqueous systems. This improvement enables the creation of high-energy-density electrochemical capacitors with potential applications in redox flow batteries.
Apple MacBook Pro 14-inch (M4 Pro)
Apple MacBook Pro 14-inch (M4 Pro) powers local ML workloads, large datasets, and multi-display analysis for field and lab teams.
Researchers at Rice University developed a new priming method to optimize prelithiation in silicon anodes, improving battery life cycles by up to 44% and energy density. The method uses stabilized lithium metal particles with surfactants, enabling more stable SEI layer formation and reduced lithium depletion.
Researchers are working on a new concept for lithium-air batteries that could lead to significant improvements in energy storage capacity. A collaborative project in Germany aims to test new materials and components to enhance the stability of these battery cells. The goal is to overcome technical challenges such as unstable electrolyt...
Researchers at NIMS found that a lithium negative electrode degrades rapidly during charge/discharge cycles, causing overpotential and short cycle life. Using a lightweight protective layer, they extended the battery's cycle life without compromising its high energy density.
Researchers pioneered a technique to observe the 3D internal structure of rechargeable batteries, enabling direct observation of the solid electric interface (SEI) and its progression. The study reveals key predictors of SEI layer formation in a complex interplay of molecular dimensions, surface properties, and solvent interactions.
A new study by the University of Illinois at Urbana-Champaign demonstrates an approach for integrated capture and conversion of nitrate-contaminated waters into valuable ammonia using a single electrochemical cell. The device shows significant enhancements in energy efficiency, nitrate removal, and ammonium production rate compared to ...
Rigol DP832 Triple-Output Bench Power Supply
Rigol DP832 Triple-Output Bench Power Supply powers sensors, microcontrollers, and test circuits with programmable rails and stable outputs.
Assistant Professor Mohammad Asadi has published a paper in Science describing the chemistry behind his novel lithium-air battery design, which could store one kilowatt-hour per kilogram or higher. This breakthrough technology has the potential to revolutionize heavy-duty vehicles such as airplanes, trains, and submarines.
Researchers from City University of Hong Kong have developed a novel, tiny device to observe liquid-phase electrochemical reactions in energy devices at nanoscale. The device enables real-time and high-resolution visualization of complex electrochemical processes.
A Cornell University collaboration has made an innovative discovery by incorporating carbon dioxide into organic molecules via electrosynthesis. The team successfully created carboxylated pyridines, which are vital to medicinal chemistry, using a novel electrochemical reactor setup.
A new, low-cost battery made with sodium-sulphur holds four times the energy capacity of lithium-ion batteries and is cheaper to produce. This breakthrough has the potential to dramatically reduce costs and provide a high-performing solution for large renewable energy storage systems.
Researchers at Brookhaven Lab and PNNL develop a new method to study the solid-electrolyte interphase in lithium metal batteries, revealing its convoluted chemistry. The team's findings provide a foundation for building more effective battery cells with higher energy density.
Apple AirPods Pro (2nd Generation, USB-C)
Apple AirPods Pro (2nd Generation, USB-C) provide clear calls and strong noise reduction for interviews, conferences, and noisy field environments.
Researchers have developed a new technology that can swiftly put brakes on an overheated Li-ion battery, shutting it down and preventing fires. The material, which uses thermally-responsive shape memory polymer, maintains high conductivity at normal temperatures.
Scientists have created a new type of battery that stores sodium ions in combination with their solvate shell, enabling reversible co-intercalation. This innovation could improve efficiency and performance at low temperatures, making it suitable for alternative cell concepts.
Researchers at KAUST developed conductive membranes that stimulate microbial growth and separate biochemical products, reducing the CO2 conversion time from over 30 days to just one month. The membranes use nickel nanoparticles to catalyze hydrogen production, enhancing efficiency and stability in microbial electrosynthesis systems.
Researchers from Tokyo University of Science create a metal–organic framework-based magnesium ion conductor showing superionic conductivity at room temperature, overcoming the limitations of magnesium ion-based energy devices. The novel Mg2+ electrolyte exhibits a high conductivity of 10−3 S cm−1, making it suitable for battery applica...
Apple iPad Pro 11-inch (M4)
Apple iPad Pro 11-inch (M4) runs demanding GIS, imaging, and annotation workflows on the go for surveys, briefings, and lab notebooks.
A team of researchers from Tokyo University of Science has developed a novel multi-proton carrier complex that shows efficient proton conductivity even at high temperatures. The resulting starburst-type metal complex acts as a proton transmitter, making it 6 times more potent than individual imidazole molecules.
Researchers at the University at Buffalo have developed a new magnetic material that can help monitor the amount of charge left in lithium-ion batteries. By tracking changes in the material's magnetism, scientists can estimate the battery's state of charge.
Researchers at the University of Surrey have successfully increased the lifespan and stability of solid-state lithium-ion batteries. The new high-density batteries are less likely to short-circuit, addressing a common issue in previous models.
Researchers developed an amphiphilic assembly to enhance electron transfer kinetics in biofuel cells. The approach resulted in high power output and operational stability, breaking the limitations of traditional enzyme immobilization methods.