Bluesky Facebook Reddit Email

Life Sciences

Comprehensive exploration of living organisms, biological systems, and life processes across all scales from molecules to ecosystems. Encompasses cutting-edge research in biology, genetics, molecular biology, ecology, biochemistry, microbiology, botany, zoology, evolutionary biology, genomics, and biotechnology. Investigates cellular mechanisms, organism development, genetic inheritance, biodiversity conservation, metabolic processes, protein synthesis, DNA sequencing, CRISPR gene editing, stem cell research, and the fundamental principles governing all forms of life on Earth.

447,757 articles | 2542 topics

Health and Medicine

Comprehensive medical research, clinical studies, and healthcare sciences focused on disease prevention, diagnosis, and treatment. Encompasses clinical medicine, public health, pharmacology, epidemiology, medical specialties, disease mechanisms, therapeutic interventions, healthcare innovation, precision medicine, telemedicine, medical devices, drug development, clinical trials, patient care, mental health, nutrition science, health policy, and the application of medical science to improve human health, wellbeing, and quality of life across diverse populations.

431,843 articles | 751 topics

Social Sciences

Comprehensive investigation of human society, behavior, relationships, and social structures through systematic research and analysis. Encompasses psychology, sociology, anthropology, economics, political science, linguistics, education, demography, communications, and social research methodologies. Examines human cognition, social interactions, cultural phenomena, economic systems, political institutions, language and communication, educational processes, population dynamics, and the complex social, cultural, economic, and political forces shaping human societies, communities, and civilizations throughout history and across the contemporary world.

260,756 articles | 745 topics

Physical Sciences

Fundamental study of the non-living natural world, matter, energy, and physical phenomena governing the universe. Encompasses physics, chemistry, earth sciences, atmospheric sciences, oceanography, materials science, and the investigation of physical laws, chemical reactions, geological processes, climate systems, and planetary dynamics. Explores everything from subatomic particles and quantum mechanics to planetary systems and cosmic phenomena, including energy transformations, molecular interactions, elemental properties, weather patterns, tectonic activity, and the fundamental forces and principles underlying the physical nature of reality.

257,913 articles | 1552 topics

Applied Sciences and Engineering

Practical application of scientific knowledge and engineering principles to solve real-world problems and develop innovative technologies. Encompasses all engineering disciplines, technology development, computer science, artificial intelligence, environmental sciences, agriculture, materials applications, energy systems, and industrial innovation. Bridges theoretical research with tangible solutions for infrastructure, manufacturing, computing, communications, transportation, construction, sustainable development, and emerging technologies that advance human capabilities, improve quality of life, and address societal challenges through scientific innovation and technological progress.

225,386 articles | 998 topics

Scientific Community

Study of the practice, culture, infrastructure, and social dimensions of science itself. Addresses how science is conducted, organized, communicated, and integrated into society. Encompasses research funding mechanisms, scientific publishing systems, peer review processes, academic ethics, science policy, research institutions, scientific collaboration networks, science education, career development, research programs, scientific methods, science communication, and the sociology of scientific discovery. Examines the human, institutional, and cultural aspects of scientific enterprise, knowledge production, and the translation of research into societal benefit.

193,043 articles | 157 topics

Space Sciences

Comprehensive study of the universe beyond Earth, encompassing celestial objects, cosmic phenomena, and space exploration. Includes astronomy, astrophysics, planetary science, cosmology, space physics, astrobiology, and space technology. Investigates stars, galaxies, planets, moons, asteroids, comets, black holes, nebulae, exoplanets, dark matter, dark energy, cosmic microwave background, stellar evolution, planetary formation, space weather, solar system dynamics, the search for extraterrestrial life, and humanity's efforts to explore, understand, and unlock the mysteries of the cosmos through observation, theory, and space missions.

29,662 articles | 175 topics

Research Methods

Comprehensive examination of tools, techniques, methodologies, and approaches used across scientific disciplines to conduct research, collect data, and analyze results. Encompasses experimental procedures, analytical methods, measurement techniques, instrumentation, imaging technologies, spectroscopic methods, laboratory protocols, observational studies, statistical analysis, computational methods, data visualization, quality control, and methodological innovations. Addresses the practical techniques and theoretical frameworks enabling scientists to investigate phenomena, test hypotheses, gather evidence, ensure reproducibility, and generate reliable knowledge through systematic, rigorous investigation across all areas of scientific inquiry.

21,889 articles | 139 topics

Mathematics

Study of abstract structures, patterns, quantities, relationships, and logical reasoning through pure and applied mathematical disciplines. Encompasses algebra, calculus, geometry, topology, number theory, analysis, discrete mathematics, mathematical logic, set theory, probability, statistics, and computational mathematics. Investigates mathematical structures, theorems, proofs, algorithms, functions, equations, and the rigorous logical frameworks underlying quantitative reasoning. Provides the foundational language and tools for all scientific fields, enabling precise description of natural phenomena, modeling of complex systems, and the development of technologies across physics, engineering, computer science, economics, and all quantitative sciences.

3,023 articles | 113 topics

Boosting thermoelectric efficiency by 91% with oxygen vacancies

A team of scientists at Pohang University of Science & Technology has developed a novel approach to enhance thermoelectric efficiency by controlling oxygen vacancies. By precisely controlling the number of oxygen vacancies in materials, they achieved a remarkable 91% improvement in thermoelectric performance.

Apple iPhone 17 Pro

Apple iPhone 17 Pro delivers top performance and advanced cameras for field documentation, data collection, and secure research communications.

Improving how we design materials

Advanced computer simulations reveal shear deformations and internal mechanical stresses play a crucial role in grain growth and evolution. This discovery helps explain why real polycrystals behave differently than predicted and offers insights into designing stronger materials.

Apple Watch Series 11 (GPS, 46mm)

Apple Watch Series 11 (GPS, 46mm) tracks health metrics and safety alerts during long observing sessions, fieldwork, and remote expeditions.

Small changes can dramatically boost efficacy of piezoceramics

By reducing the thickness of a commonly-used piezoelectric ceramic material, researchers at Indian Institute of Science (IISc) show that its efficacy can be dramatically increased, resulting in improved strain values. The team discovered that removing oxygen vacancies in lead-free piezoceramics also boosts electrostrain to 1% or higher.

Mapping the nanoscale architecture of functional materials

Researchers have developed a new X-ray technique called XL-DOT that visualizes crystal grains, grain boundaries, and defects in materials, enabling previously inaccessible insights into functional materials. The technique uses polarized X-rays to probe the orientation of structural domains in three dimensions.

Surprise at the grain boundary

Researchers discovered five distinct grain boundary structures composed of different arrangements of icosahedral cage units, enabling dense packing of iron atoms. The formation of these quasicrystalline-like phases can be used to tailor material behavior and make materials more resilient against degradation processes.

The expansion of turbid drops in water

A team of researchers at Johannes Gutenberg University Mainz has developed a new method to study the interior of crystalline drops using monochromatic illumination. This approach exploits the color-dependent scattering of light and reveals the density profile of the drop, including initial rapid expansion due to particle repulsion befo...

Nikon Monarch 5 8x42 Binoculars

Nikon Monarch 5 8x42 Binoculars deliver bright, sharp views for wildlife surveys, eclipse chases, and quick star-field scans at dark sites.

Automated calculation of surface properties in crystals

Scientists create high-throughput automation to calculate surface properties of crystalline materials using established laws of physics. This accelerates the search for relevant materials for applications in energy conversion, production, and storage.

SAMSUNG T9 Portable SSD 2TB

SAMSUNG T9 Portable SSD 2TB transfers large imagery and model outputs quickly between field laptops, lab workstations, and secure archives.

Artificial intelligence unravels mysteries of polycrystalline materials

Researchers at Nagoya University used AI to analyze image data of polycrystalline silicon and discovered staircase-like structures that cause dislocations during crystal growth. The study sheds light on the formation of dislocations in polycrystalline materials, which can affect electrical conduction and overall performance.

Physicists find unusual waves in nickel-based magnet

Researchers found that two outermost electrons from each nickel ion behaved differently, cancelling each other out in a phenomenon called a spin singlet. This led to the discovery of two families of propagating waves at dramatically different energies, contradicting expectations of local excitations.

Apple MacBook Pro 14-inch (M4 Pro)

Apple MacBook Pro 14-inch (M4 Pro) powers local ML workloads, large datasets, and multi-display analysis for field and lab teams.

Grain boundaries go with the flow

A team of researchers from Rice University has modeled the dynamics of grain boundaries in polycrystalline materials using a rotating magnetic field technique. The study shows that grain boundaries can change readily in response to shear stress, and voids in these structures can act as sources and sinks for their movement.

Davis Instruments Vantage Pro2 Weather Station

Davis Instruments Vantage Pro2 Weather Station offers research-grade local weather data for networked stations, campuses, and community observatories.

Tracking real-time atomic movement between crystal grains in metals

Scientists at Georgia Institute of Technology observe unprecedented atomic processes that dictate mechanical behavior in metals. They develop novel methods to visualize grain boundary sliding, revealing previously unknown movements and accommodating transferred atoms through adjusting grain boundary structures.

Growing the perfect diamond: Simulations reveal interesting geometric patterns

Scientists have simulated the growth of ultra-thin polycrystalline diamond films with promising results. The two-dimensional simulations revealed interesting geometric structures and shed light on how to create robust materials. The research has implications for biomedical science, quantum devices, and other applications.

Refuting a 70-year approach to predicting material microstructure

Researchers have found that a conventional model for predicting material microstructure does not apply to polycrystalline materials. They used near-field high energy diffraction microscopy (HEDM) to study grain boundaries, revealing that the model's predictions are inconsistent with experimental data.

Anker Laptop Power Bank 25,000mAh (Triple 100W USB-C)

Anker Laptop Power Bank 25,000mAh (Triple 100W USB-C) keeps Macs, tablets, and meters powered during extended observing runs and remote surveys.

A sharp look into tiny ferroelectric crystals

Scientists have developed a method to precisely map the polarization pattern in thin ferroelectric layers, revealing new insights into the physics of these objects. The technique, combined with machine learning, allows for the spatial resolution of ferroelectric domains below 10 nanometers.

Scientists first to achieve Wannier-Stark localization in polycrystals

Researchers from Paderborn University and Max Planck Institute for Polymer Research have successfully demonstrated Wannier-Stark localization in polycrystalline substances. This achievement marks a significant step towards developing affordable optical modulators with broad applications in telecommunications and other fields.

Mapping the evolution of materials

Lehigh University researchers are developing a model to understand the impact of grain growth on material properties. The project aims to create new materials informatics methods, innovative stochastic differential equations, and models of grain growth to improve material performance and reliability.

Fluke 87V Industrial Digital Multimeter

Fluke 87V Industrial Digital Multimeter is a trusted meter for precise measurements during instrument integration, repairs, and field diagnostics.

New material offers ecofriendly solution to converting waste heat into energy

Researchers have developed a high-performing thermoelectric material that converts heat to electricity with record-high efficiency, making it suitable for widespread industrial applications. The purified tin selenide in polycrystalline form overcomes earlier oxidation problems, enabling the production of low-cost and efficient devices.

Falling in line: The simple design and control of MOF electric flow

A team from Osaka Prefecture University has developed a method to design and control the path of electron flow in a polycrystalline material, enabling high conductivity in a controllable direction. This breakthrough paves the way for the creation of next-generation thin-film smart devices.

Transformation toughening of ceramics made crystal clear

Zirconia ceramics exhibit improved toughness due to phase changes, but real-time observation of these changes is challenging. Researchers employ time-resolved X-ray diffraction to visualize transformation toughening during dynamic fracture.

Garmin GPSMAP 67i with inReach

Garmin GPSMAP 67i with inReach provides rugged GNSS navigation, satellite messaging, and SOS for backcountry geology and climate field teams.

Crystal power

Scientists at Argonne National Laboratory developed a single-crystal electrode that provides a deeper understanding of charge-discharge processes in advanced batteries. The study reveals new information about the cathode chemistry, including the origin of extra capacity and the formation of detrimental phases during cycling.

Pitt engineer Sangyeop Lee receives $500K NSF CAREER Award

Sangyeop Lee, a Pitt engineer, has received a $500K NSF CAREER Award to develop machine learning models that predict material conductive properties. The project aims to create more efficient heat management in electronic devices and energy storage systems.

From crystals to glasses: a new unified theory for heat transport

Researchers from SISSA and UC Davis develop a new methodology that bridges different approaches for crystals and glasses, enabling predictive modelling of heat transport in complex disordered materials. This breakthrough empowers scientists to understand and design heat transport for various applications.

CalDigit TS4 Thunderbolt 4 Dock

CalDigit TS4 Thunderbolt 4 Dock simplifies serious desks with 18 ports for high-speed storage, monitors, and instruments across Mac and PC setups.

Efficient triplet pair separation in dibenzopentalene derivatives

Researchers found highly efficient triplet pair state separation in polycrystalline films of dibenzopentalene derivatives, exceeding 100% yield. This breakthrough suggests feasibility of converting correlated singlet excited states to two free triplets efficiently for organic solar cells.

Sky & Telescope Pocket Sky Atlas, 2nd Edition

Sky & Telescope Pocket Sky Atlas, 2nd Edition is a durable star atlas for planning sessions, identifying targets, and teaching celestial navigation.

Kestrel 3000 Pocket Weather Meter

Kestrel 3000 Pocket Weather Meter measures wind, temperature, and humidity in real time for site assessments, aviation checks, and safety briefings.

Coffee-ring effect leads to crystallization control in semiconductors

Researchers control crystallization patterns in semiconductors by varying film thickness, enabling fine control over crystal orientation and position. This breakthrough facilitates high-quality, tailored polycrystal semiconductors for optoelectronics, photovoltaics and printed electronic components.

Graphene is strong, but is it tough?

Berkeley Lab scientists found that polycrystalline graphene is strong but has low toughness, a property necessary for structural reliability in applications. The researchers developed a statistical model to predict failure in the material, revealing its fracture resistance.

Apple iPad Pro 11-inch (M4)

Apple iPad Pro 11-inch (M4) runs demanding GIS, imaging, and annotation workflows on the go for surveys, briefings, and lab notebooks.

Rensselaer professor Daniel Lewis receives NSF CAREER Award

Daniel Lewis, a young Rensselaer professor, has received the prestigious NSF CAREER Award to study grain growth in metallic and ceramic materials. His research aims to understand how environmental factors affect material properties and behavior.

Creality K1 Max 3D Printer

Creality K1 Max 3D Printer rapidly prototypes brackets, adapters, and fixtures for instruments and classroom demonstrations at large build volume.

Just scratching the surface: New technique maps nanomaterials as they grow

Researchers at Rensselaer Polytechnic Institute developed a measurement technique to map nanomaterials as they grow, enhancing material efficiency. The new method allows for faster discovery of optimal nanomaterial structures, leading to potential breakthroughs in solar panels and magnetic data storage.

New research shows why metal alloys degrade

Researchers from the University of Michigan have discovered that metal alloys can degrade due to diffusion, a process where atoms hop through the material, changing its structure. This finding has significant implications for the development of longer-lasting alloys, particularly in electronic materials like solder.

Single-crystal semiconductor wire built into an optical fiber

A team from Penn State University and the University of Southampton created a single-crystal semiconductor inside an optical fiber, overcoming performance degradation between fibers and devices. The new device enables faster and more efficient electronic signals, opening up potential for next-level applications in various fields.

Sony Alpha a7 IV (Body Only)

Sony Alpha a7 IV (Body Only) delivers reliable low-light performance and rugged build for astrophotography, lab documentation, and field expeditions.

A walk along an interface yields its mobility

Researchers at Colorado School of Mines and Northeastern University report a new computational methodology to quantify interface mobility, overcoming limitations of past studies. The method efficiently addresses the effect of impurities, revealing a more severe impact on interface motion than previously thought.