Bluesky Facebook Reddit Email

Life Sciences

Comprehensive exploration of living organisms, biological systems, and life processes across all scales from molecules to ecosystems. Encompasses cutting-edge research in biology, genetics, molecular biology, ecology, biochemistry, microbiology, botany, zoology, evolutionary biology, genomics, and biotechnology. Investigates cellular mechanisms, organism development, genetic inheritance, biodiversity conservation, metabolic processes, protein synthesis, DNA sequencing, CRISPR gene editing, stem cell research, and the fundamental principles governing all forms of life on Earth.

447,757 articles | 2542 topics

Health and Medicine

Comprehensive medical research, clinical studies, and healthcare sciences focused on disease prevention, diagnosis, and treatment. Encompasses clinical medicine, public health, pharmacology, epidemiology, medical specialties, disease mechanisms, therapeutic interventions, healthcare innovation, precision medicine, telemedicine, medical devices, drug development, clinical trials, patient care, mental health, nutrition science, health policy, and the application of medical science to improve human health, wellbeing, and quality of life across diverse populations.

431,843 articles | 751 topics

Social Sciences

Comprehensive investigation of human society, behavior, relationships, and social structures through systematic research and analysis. Encompasses psychology, sociology, anthropology, economics, political science, linguistics, education, demography, communications, and social research methodologies. Examines human cognition, social interactions, cultural phenomena, economic systems, political institutions, language and communication, educational processes, population dynamics, and the complex social, cultural, economic, and political forces shaping human societies, communities, and civilizations throughout history and across the contemporary world.

260,756 articles | 745 topics

Physical Sciences

Fundamental study of the non-living natural world, matter, energy, and physical phenomena governing the universe. Encompasses physics, chemistry, earth sciences, atmospheric sciences, oceanography, materials science, and the investigation of physical laws, chemical reactions, geological processes, climate systems, and planetary dynamics. Explores everything from subatomic particles and quantum mechanics to planetary systems and cosmic phenomena, including energy transformations, molecular interactions, elemental properties, weather patterns, tectonic activity, and the fundamental forces and principles underlying the physical nature of reality.

257,913 articles | 1552 topics

Applied Sciences and Engineering

Practical application of scientific knowledge and engineering principles to solve real-world problems and develop innovative technologies. Encompasses all engineering disciplines, technology development, computer science, artificial intelligence, environmental sciences, agriculture, materials applications, energy systems, and industrial innovation. Bridges theoretical research with tangible solutions for infrastructure, manufacturing, computing, communications, transportation, construction, sustainable development, and emerging technologies that advance human capabilities, improve quality of life, and address societal challenges through scientific innovation and technological progress.

225,386 articles | 998 topics

Scientific Community

Study of the practice, culture, infrastructure, and social dimensions of science itself. Addresses how science is conducted, organized, communicated, and integrated into society. Encompasses research funding mechanisms, scientific publishing systems, peer review processes, academic ethics, science policy, research institutions, scientific collaboration networks, science education, career development, research programs, scientific methods, science communication, and the sociology of scientific discovery. Examines the human, institutional, and cultural aspects of scientific enterprise, knowledge production, and the translation of research into societal benefit.

193,043 articles | 157 topics

Space Sciences

Comprehensive study of the universe beyond Earth, encompassing celestial objects, cosmic phenomena, and space exploration. Includes astronomy, astrophysics, planetary science, cosmology, space physics, astrobiology, and space technology. Investigates stars, galaxies, planets, moons, asteroids, comets, black holes, nebulae, exoplanets, dark matter, dark energy, cosmic microwave background, stellar evolution, planetary formation, space weather, solar system dynamics, the search for extraterrestrial life, and humanity's efforts to explore, understand, and unlock the mysteries of the cosmos through observation, theory, and space missions.

29,662 articles | 175 topics

Research Methods

Comprehensive examination of tools, techniques, methodologies, and approaches used across scientific disciplines to conduct research, collect data, and analyze results. Encompasses experimental procedures, analytical methods, measurement techniques, instrumentation, imaging technologies, spectroscopic methods, laboratory protocols, observational studies, statistical analysis, computational methods, data visualization, quality control, and methodological innovations. Addresses the practical techniques and theoretical frameworks enabling scientists to investigate phenomena, test hypotheses, gather evidence, ensure reproducibility, and generate reliable knowledge through systematic, rigorous investigation across all areas of scientific inquiry.

21,889 articles | 139 topics

Mathematics

Study of abstract structures, patterns, quantities, relationships, and logical reasoning through pure and applied mathematical disciplines. Encompasses algebra, calculus, geometry, topology, number theory, analysis, discrete mathematics, mathematical logic, set theory, probability, statistics, and computational mathematics. Investigates mathematical structures, theorems, proofs, algorithms, functions, equations, and the rigorous logical frameworks underlying quantitative reasoning. Provides the foundational language and tools for all scientific fields, enabling precise description of natural phenomena, modeling of complex systems, and the development of technologies across physics, engineering, computer science, economics, and all quantitative sciences.

3,023 articles | 113 topics

Shining a light on dark valleytronics

Scientists at OIST use advanced spectroscopy to track the evolution of dark excitons, overcoming the fundamental challenge of accessing these elusive particles. The findings lay the foundation for dark valleytronics as a field, with potential applications in quantum information technologies.

Keeping the photon in the dark

Researchers at the University of Innsbruck have developed a versatile method to control dark excitons in semiconductor quantum dots using chirped laser pulses and magnetic fields. This allows for the storage and manipulation of excitons, enabling new opportunities for quantum memory control and entangled photon pair generation.

Apple iPhone 17 Pro

Apple iPhone 17 Pro delivers top performance and advanced cameras for field documentation, data collection, and secure research communications.

Strangely "quiet" current in strange metal

Electric current in certain materials flows as a continuum rather than with discrete quasi-electrons, according to new research. This challenges the traditional picture of electrons and quasiparticles.

‘Strange metal’ is strangely quiet in noise experiment

Rice physicists find that a 'strange metal' quantum material exhibits greatly suppressed shot noise, suggesting unconventional charge transport mechanisms. The study provides direct empirical evidence for the idea that electricity may flow through strange metals in an unusual liquidlike form.

Solving quantum mysteries: New insights into 2D semiconductor physics

Researchers from Monash University have introduced a new theoretical study on quantum impurities, exploring their behavior in two-dimensional semiconductors. The 'quantum virial expansion' method sheds light on the complex interactions between impurities and their surroundings in 2D materials.

Anker Laptop Power Bank 25,000mAh (Triple 100W USB-C)

Anker Laptop Power Bank 25,000mAh (Triple 100W USB-C) keeps Macs, tablets, and meters powered during extended observing runs and remote surveys.

Theory can sort order from chaos in complex quantum systems

A new mathematical theory developed by scientists at Rice University and Oxford University can predict the nature of motions in complex quantum systems. The theory applies to any sufficiently complex quantum system and may give insights into building better quantum computers, designing solar cells, or improving battery performance.

A drop in the sea of electrons

Scientists at Swinburne University of Technology and FLEET collaborators observe and explain signatures of Fermi polaron interactions in atomically-thin WS2 using ultrafast spectroscopy. Repulsive forces arise from phase-space filling, while attractive forces lead to cooperatively bound exciton-exciton-electron states.

Computational sleuthing confirms first 3D quantum spin liquid

Researchers use computational detective work to verify the existence of a 3D quantum spin liquid in cerium zirconium pyrochlore, overcoming decades-long challenge. The material exhibits fractionalized spin excitations, where electrons do not arrange their spins in relation to neighbors.

Science snapshots from Berkeley Lab

Researchers at Berkeley Lab have successfully engineered microbes to produce novel chemicals and developed a new technique for studying enzyme reactions in real-time. This breakthrough could lead to the production of sustainable fuels, pharmaceuticals, and renewable plastics.

SAMSUNG T9 Portable SSD 2TB

SAMSUNG T9 Portable SSD 2TB transfers large imagery and model outputs quickly between field laptops, lab workstations, and secure archives.

Pitt study shows optical fields can modify electrons in metal

Researchers at the University of Pittsburgh have discovered that applying intense optical fields to electrons in metals can change their electronic properties. This 'dressing' effect allows for potential applications in conventional electronics, quantum computing, and entirely new areas of research.

New hurdle cleared in race toward quantum computing

Purdue researchers have successfully probed interference of quasiparticles using a new device. The device, built with molecular beam epitaxy, overcomes technical challenges to observe quantum mechanical effects. This breakthrough may be key to developing topological qubits and advancing quantum computing.

'Strange metals' just got stranger

Researchers at Florida State University's National High Magnetic Field Laboratory have discovered that cuprates, known for their unique behavior, carry current in a non-conventional way. The study reveals that the electrons seem to cooperate as they move through the material, contradicting the widely accepted understanding of conventio...

Rigol DP832 Triple-Output Bench Power Supply

Rigol DP832 Triple-Output Bench Power Supply powers sensors, microcontrollers, and test circuits with programmable rails and stable outputs.

EPFL uses excitons to take electronics into the future

A team of EPFL researchers has created a new type of transistor using excitons, enabling effective operation at room temperature. The breakthrough uses two 2D materials to manipulate exciton lifespans and control their movement, paving the way for optoelectronic devices with reduced energy consumption and increased efficiency.

New material helps record data with light

Researchers from ITMO University and their European colleagues created quasiparticles called excitons, fully controllable and room-temperature capable. These particles can generate light in LEDs and lasers, while also being used for recording optical signals.

Hot on the heels of quasiparticles

Researchers have found Fermi polarons, a new type of quasiparticle, in a certain type of semiconductors. This discovery challenges the previous assumption that excitons or trions are formed instead. The study provides valuable insights into the material's properties and has implications for basic research and potential applications.

JILA physicists discover 'quantum droplet' in semiconductor

Researchers at JILA discovered a new quasiparticle, called a 'quantum droplet', which has both quantum and liquid-like characteristics. The droplets are stable enough for future studies on interactions between light and highly correlated states of matter.

GQ GMC-500Plus Geiger Counter

GQ GMC-500Plus Geiger Counter logs beta, gamma, and X-ray levels for environmental monitoring, training labs, and safety demonstrations.

A direct look at graphene

Researchers at Lawrence Berkeley National Laboratory have made the first direct observations of electron-electron interactions in graphene. The study reveals that these interactions are critical to graphene's extraordinary properties, including its superconductivity and high-speed conductivity.

Graphene gives up more of its secrets

Researchers used ARPES to study graphene's behavior near the Dirac point, observing unusual electronic interactions and renormalization. This discovery confirms graphene's semimetal properties and provides insight into its unique electronic structure.

Surprising graphene

Researchers measured graphene's properties with unprecedented accuracy, confirming its unusual features and revealing significant departures from theoretical predictions. The results point to novel practical applications in nanoscale electronics.

Weizmann Institute scientists find new 'quasiparticles'

Researchers at the Weizmann Institute have created 'quasiparticles' with a fraction of an electron's charge, which could enable powerful yet stable quantum computers. The discovery was made using an extremely precise setup and unique material properties.

Celestron NexStar 8SE Computerized Telescope

Celestron NexStar 8SE Computerized Telescope combines portable Schmidt-Cassegrain optics with GoTo pointing for outreach nights and field campaigns.

Eight-fold quantum states blossom in a high-temperature superconductor

Scientists have observed eight-fold configuration of quasiparticle interference in a high-Tc superconductor, predicting a peculiar electronic state known as the 'stripe phase.' This discovery calls into question the necessity of stripes for superconductivity in high-temperature materials.