Researchers developed a unified framework to measure spacetime fluctuations, enabling clear targets for experiments. The study provides measurable signatures for different categories of fluctuations, expanding the possibilities for testing quantum-gravity predictions.
Dr. Marlan Scully traces the journey of quantum mechanics, from its quirky beginnings to its role in solving science's toughest challenges, including quantum computing, cryptography, and gravitational wave detection.
SAMSUNG T9 Portable SSD 2TB
SAMSUNG T9 Portable SSD 2TB transfers large imagery and model outputs quickly between field laptops, lab workstations, and secure archives.
Scientists at CU Boulder have solved a pressing mystery about the universe's gravitational wave background by revealing the role of smaller galaxies in galaxy evolution. The new study suggests that when a smaller supermassive black hole merges with a larger one, the smaller black hole gains mass, producing larger gravitational waves.
Researchers reanalyze Cassini mission data to find that Titan's interior is more icy and slushy than previously thought, with implications for the search for life on Titan. The new findings suggest a slushy layer instead of an ocean, which could facilitate the growth of simple organisms.
Researchers at the University of Amsterdam developed a new model to track dark matter's effect on black holes' gravitational waves. The study focuses on extreme mass-ratio inspirals, where a smaller object orbits a massive black hole, emitting gravitational waves that can reveal dark matter's distribution around black holes.
Davis Instruments Vantage Pro2 Weather Station
Davis Instruments Vantage Pro2 Weather Station offers research-grade local weather data for networked stations, campuses, and community observatories.
The international collaboration has detected a significant fraction of gravitational signals, constituting two-thirds of approximately 350 signals detected to date. The analysis of the data has led to numerous new discoveries and a deeper understanding of compact binary systems and fundamental physical processes in the universe.
A research team at the Purple Mountain Observatory confirms Stephen Hawking's prediction that a black hole's horizon area cannot shrink when two black holes merge. The analysis of GW230814 shows strong support for the black-hole area law, validating general relativity in extreme astrophysical environments.
Astrophysicists used simulations to uncover the missing piece that previous studies had overlooked: magnetic fields. They found that strong magnetic fields can slow down a black hole and carry away some of its stellar mass, creating lighter and more slowly spinning black holes.
Apple Watch Series 11 (GPS, 46mm)
Apple Watch Series 11 (GPS, 46mm) tracks health metrics and safety alerts during long observing sessions, fieldwork, and remote expeditions.
The LIGO-Virgo-KAGRA Collaboration reports the detection of two gravitational wave events with unusual black hole spins. The observed black holes have size differentials and spin orientations that suggest they were formed through earlier mergers, providing evidence for hierarchical mergers in dense cosmic environments.
Two distant black hole mergers, measured one month apart in 2024, provide insights into the nature and evolution of deep-space collisions. The mergers validate fundamental laws of physics predicted by Einstein and furthers the search for new elementary particles with potential to extract energy from black holes.
Japanese physicists have shown that knots can arise in a realistic particle physics framework, potentially explaining the origin of the universe's matter surplus. By combining two long-studied extensions of the Standard Model, the team found a stable knot configuration that could have formed and dominated in the early universe.
AmScope B120C-5M Compound Microscope
AmScope B120C-5M Compound Microscope supports teaching labs and QA checks with LED illumination, mechanical stage, and included 5MP camera.
Researchers propose a method to distinguish between nanohertz gravitational wave sources using pulsar timing arrays. By searching for beat phenomena in the tiny shifts of pulsars' radio-pulse arrival times, scientists can identify specific, nearby binary supermassive black hole systems.
Scientists have unveiled a new detector concept that uses optical cavity and atomic clock technologies to detect gravitational waves in the milli-Hertz frequency band. This approach provides an immediate, cost-effective means to explore the mid-band range, which hosts signals from compact binaries of white dwarfs and black hole mergers.
UC Riverside-developed FROSTI system allows precise control of laser wavefronts at extreme power levels, opening a new pathway for gravitational-wave astronomy. This technology expands the universe's view by a factor of 10, potentially detecting millions of black hole and neutron star mergers with unmatched fidelity.
Apple iPhone 17 Pro
Apple iPhone 17 Pro delivers top performance and advanced cameras for field documentation, data collection, and secure research communications.
The latest gravitational wave observation reveals two black holes with masses 30 times that of the Sun, shattering previous expectations. This discovery confirms a longstanding theory by Stephen Hawking and opens new possibilities for testing our understanding of gravity.
A newly detected black hole merger has provided the clearest evidence yet of how black holes work, confirming fundamental predictions by Albert Einstein and Stephen Hawking. The observations reveal insights into the properties of black holes and the nature of space-time, hinting at how quantum physics and general relativity fit together.
The LIGO-Virgo-KAGRA Collaboration has detected GW250114, a clear gravitational wave signal confirming two long-standing theories. The study validates Professor Stephen Hawking's prediction that the total event horizon area of black holes cannot shrink and confirms the Kerr nature of black holes.
Researchers verified Stephen Hawking's Black Hole Area Theorem using gravitational waves, confirming the total surface area of black holes increases when they merge. This detection provides evidence for a fundamental law in physics, demonstrating the power of gravitational-wave astronomy.
CalDigit TS4 Thunderbolt 4 Dock
CalDigit TS4 Thunderbolt 4 Dock simplifies serious desks with 18 ports for high-speed storage, monitors, and instruments across Mac and PC setups.
The Laser Interferometer Gravitational-Wave Observatory (LIGO) has made a significant milestone in its 10-year history, detecting over 300 black hole mergers and surpassing previous records. The improved sensitivity of LIGO's detectors allows for the detection of fainter sources, enabling scientists to test fundamental laws of physics.
The LIGO–Virgo–KAGRA Collaboration has used the sharpest gravitational wave signal to precisely test Hawking's area theorem and confirm the remnant black hole's nature. The detection confirms that the surface area of the remnant increased, consistent with Hawking's prediction.
Researchers have recorded a signal from a nearly identical black hole collision, confirming two important predictions about merging black holes. The study provides further evidence that the surface area of a merged black hole is never less than the sum of the initial black holes, supporting Stephen Hawking's theory.
Fluke 87V Industrial Digital Multimeter
Fluke 87V Industrial Digital Multimeter is a trusted meter for precise measurements during instrument integration, repairs, and field diagnostics.
Researchers developed a new AI method called Deep Loop Shaping to quiet unwanted noise in LIGO's detectors, achieving 30-100 times better performance than traditional methods. This technology will help improve LIGO's ability to detect bigger black holes and build next-generation gravitational-wave detectors.
A team of astronomers captured a detailed image of a ribbon-like jet emerging from the heart of OJ 287, revealing extreme energy and motion near the black hole. The study sheds new light on supermassive black holes and their powerful jets, potentially offering clues to binary black hole mergers.
A new approach to analyzing gravitational-wave data could transform our understanding of extreme events like colliding black holes. The method developed by researchers from the University of Portsmouth and University College Dublin improves how scientists compare wave signals to existing models, laying important groundwork for future d...
The LIGO-Virgo-KAGRA Collaboration has detected the merger of two massive black holes, producing a final black hole approximately 225 times the mass of our Sun. The signal presents a challenge to current astrophysical models and requires advanced theoretical tools to interpret.
Researchers have developed a new laser device smaller than a penny that can conduct extremely fast and accurate measurements by precisely changing its color across a broad spectrum of light. The laser has applications ranging from guiding autonomous vehicles to detecting gravitational waves, a delicate experiment to observe our universe.
DJI Air 3 (RC-N2)
DJI Air 3 (RC-N2) captures 4K mapping passes and environmental surveys with dual cameras, long flight time, and omnidirectional obstacle sensing.
Four new studies provide conclusive evidence for the existence of intermediate-mass black holes, offering a window into the universe's first stars. The researchers used data from LIGO detectors to identify these heavy gravitational-wave events, paving the way for future observations using space-based missions like LISA.
Astrophysicist Jeremy Darling is pursuing a new method to measure the universe's gravitational wave background by analyzing the motion of quasars. His research could unravel the physics of gravity and help scientists understand galaxy evolution and fundamental assumptions about gravity.
A scientist from Tokyo Metropolitan University has resolved the thirty-year mystery of dissonance in gravitational waves emitted by a black hole. The phenomenon was caused by resonance between two distinctive modes, which is not a rare incident but turns up universally in a range of modes.
Researchers at Max Planck Institute use AI to design novel interferometric gravitational wave detectors, discovering dozens of top-performing designs that surpass known human solutions. These findings have the potential to improve detectable signal range by over an order of magnitude.
The Fred Young Submillimeter Telescope (FYST) has arrived at its final home in Chile's Parque Astronómico Atacama after a six-week ocean voyage and trekking through the mountains. The telescope will study cosmic dawn, star and galaxy formation, and gravitational waves from the Big Bang.
Apple iPad Pro 11-inch (M4)
Apple iPad Pro 11-inch (M4) runs demanding GIS, imaging, and annotation workflows on the go for surveys, briefings, and lab notebooks.
Researchers from the Faculty of Sciences discover a deeper understanding of Martian climate through analysis of atmospheric waves. The study highlights greater asymmetry between Mars' southern and northern hemispheres, shedding new light on the Red Planet's climate dynamics.
The StarBurst Multimessenger Pioneer will detect short-duration bursts of gamma-rays from neutron star mergers, providing fundamental insight into these extreme explosions. With an effective area four times greater than the Fermi Gamma-ray Burst Monitor, it will increase the detection rate of EM counterparts to NS mergers.
A new machine learning algorithm can fully characterize systems of merging neutron stars in under a second, compared to traditional methods which take around an hour. This allows for rapid localization of the source and pointing of telescopes towards the merging neutron stars.
A new optical technology developed at UC Riverside enables gravitational-wave detectors to reach extreme laser powers, overcoming limitations that hinder the detection of cosmic phenomena. This breakthrough is expected to significantly expand our view of the universe, particularly in the earliest stages of its history.
Aranet4 Home CO2 Monitor
Aranet4 Home CO2 Monitor tracks ventilation quality in labs, classrooms, and conference rooms with long battery life and clear e-ink readouts.
TEGO's three-dimensional tetrahedral structure improves stability and reliability through redundancy and stable center of mass. The configuration also enables the detection of six polarization modes simultaneously, expanding our understanding of gravitational waves.
Optical spring tracking reduces noise and improves signal clarity for gravitational-wave detectors, enabling scientists to observe distant cosmic events more effectively. The technique has the potential to expand our understanding of black holes and neutron stars as they merge.
Researchers from the International Centre for Radio Astronomy Research have discovered a possible explanation for a rare and mysterious stellar event. By conducting a meta-analysis of existing data, they were able to identify key factors contributing to this phenomenon, shedding light on its underlying mechanisms.
A study published in The Astrophysical Journal reveals that pulsar signals change as they move through the interstellar medium, highlighting a need for updates to current ISM density models. The research found that models incorporating galactic structures tend to better fit the data, but predictions of newly discovered pulsars were worse.
Apple AirPods Pro (2nd Generation, USB-C)
Apple AirPods Pro (2nd Generation, USB-C) provide clear calls and strong noise reduction for interviews, conferences, and noisy field environments.
The National Center for Supercomputing Applications (NCSA) has received the Readers' Choice Award: Best HPC Collaboration and Editors' Choice: Best Use of HPC in Physical Sciences. This is the 14th consecutive year NCSA has been honored with an HPCwire award.
The discovery provides a unique way to investigate the extreme phase of stellar evolution, bridging the gap between the earliest and final stages of binary star systems. This breakthrough could help explain cosmic events like supernova explosions and gravitational waves.
The European Research Council awards €12M to GWSky project, led by SISSA, to develop innovative tools for interpreting gravitational wave signals with great precision. The project aims to identify and understand possible anomalies in the signals, revealing new physical phenomena not predicted by Einstein's theory of General Relativity.
Astronomers have discovered patterns of regularity within the chaotic three-body problem, which is a fundamental challenge in physics. The researcher's findings suggest that certain configurations of three massive objects can lead to predictable outcomes, offering new insights into astrophysics and the behavior of black holes.
Nikon Monarch 5 8x42 Binoculars
Nikon Monarch 5 8x42 Binoculars deliver bright, sharp views for wildlife surveys, eclipse chases, and quick star-field scans at dark sites.
The WVU STARS-UP program pairs two-year colleges with nearby four-year institutions to provide astrophysics and astronomy research opportunities. The goal is to create a sustainable pipeline for careers in STEM, focusing on underrepresented students from low socioeconomic communities.
Researchers propose a novel Mössbauer method to detect gravitational waves, leveraging the precision of Mössbauer resonance and spatial resolution. The new setup enables accurate reconstruction of gravitational wave direction and polarization.
Researchers, including WVU astronomer Emmanuel Fonseca, use radio pulsars to detect gravitational waves generated by massive objects. The study will merge data from the Green Bank Telescope and CHIME radio telescope to achieve full coverage of each wave, revealing information about phenomenon and objects in distant galaxies.
Researchers unveil previously unseen properties of neutron stars through gravitational wave analysis, providing insight into internal composition and dynamic material properties. The study places observational constraints on viscosity within neutron stars.
Meta Quest 3 512GB
Meta Quest 3 512GB enables immersive mission planning, terrain rehearsal, and interactive STEM demos with high-resolution mixed-reality experiences.
Simulations predict that the violent deaths of rapidly rotating stars can create detectable gravitational waves, which could aid understanding of collapsars and black holes. The signals from these events are strong enough to be picked up by LIGO and may already exist in datasets.
A new study published in Physical Review Letters suggests that nanohertz gravitational waves may not originate from supercool first-order phase transitions. Researchers found that such transitions would struggle to complete, shifting the frequency of the waves away from nanohertz frequencies.
Scientists have developed a method to simulate gravitational waves in the lab using cold atoms, a phenomenon similar to gravitational waves. This breakthrough allows for easier study and understanding of these cosmic waves, which are challenging to detect.
Researchers found that pairs of supermassive black holes can merge due to previously overlooked behavior of dark matter particles, proposing a solution to the longstanding final parsec problem. This discovery provides insight into the nature of dark matter and its interaction with supermassive black holes.
Researchers propose that simple forms of ultra-light scalar field matter could generate detectable gravitational wave backgrounds soon after the Big Bang. This discovery could shed light on dark matter and its role in the universe's mass, offering a new avenue for fundamental physics research.
Anker Laptop Power Bank 25,000mAh (Triple 100W USB-C)
Anker Laptop Power Bank 25,000mAh (Triple 100W USB-C) keeps Macs, tablets, and meters powered during extended observing runs and remote surveys.
A team of scientists from the University of Warsaw detected a population of massive black holes, which could comprise at most a few percent of dark matter. The findings were published in Nature and the Astrophysical Journal Supplement Series.
A new study reveals that NASA's exoplanet-hunting satellite has observed the smaller black hole of a binary system directly for the first time. The discovery was made possible by the satellite's precise timing, which allowed researchers to detect a sudden burst of brightness from the smaller black hole.
A new detection method for high-frequency gravitational waves (HFGWs) has been proposed by HKUST researchers. This approach leverages the physical effect of GWs within magnetic fields and can be detected using existing telescopes, opening up new possibilities for studying the early universe and violent cosmic events.
Sean McWilliams' team will study stellar-mass and massive binary inspirals, improving modeling accuracy for the Laser Interferometer Space Antenna (LISA). The project aims to enhance the instrument's science mission by making necessary dramatic improvements in modeling accuracy.
Researchers propose a novel approach to correct the leading model of primordial black hole (PBH) formation, aligning with cosmic microwave background observations. This could imply fewer PBHs than expected, potentially affecting the dark matter theory and gravitational wave events.
Celestron NexStar 8SE Computerized Telescope
Celestron NexStar 8SE Computerized Telescope combines portable Schmidt-Cassegrain optics with GoTo pointing for outreach nights and field campaigns.
Researchers propose a new model that predicts far fewer primordial black holes than previously thought, which could be a strong candidate for dark matter. The study uses quantum field theory to explain the formation of these miniature black holes in the early universe.
The new software can detect gravitational wave signals from neutron star collisions more accurately, allowing for faster alerts and enabling further research. This improvement will help scientists better understand heavy element production, including gold and uranium, and the behavior of neutron stars.
Researchers developed a Kerr-enhanced optical spring to boost the sensitivity of next-generation gravitational wave detectors. The new design successfully amplifies signals without increasing intracavity power, opening up new avenues for unraveling the universe's mysteries.