Bluesky Facebook Reddit Email

Life Sciences

Comprehensive exploration of living organisms, biological systems, and life processes across all scales from molecules to ecosystems. Encompasses cutting-edge research in biology, genetics, molecular biology, ecology, biochemistry, microbiology, botany, zoology, evolutionary biology, genomics, and biotechnology. Investigates cellular mechanisms, organism development, genetic inheritance, biodiversity conservation, metabolic processes, protein synthesis, DNA sequencing, CRISPR gene editing, stem cell research, and the fundamental principles governing all forms of life on Earth.

447,757 articles | 2542 topics

Health and Medicine

Comprehensive medical research, clinical studies, and healthcare sciences focused on disease prevention, diagnosis, and treatment. Encompasses clinical medicine, public health, pharmacology, epidemiology, medical specialties, disease mechanisms, therapeutic interventions, healthcare innovation, precision medicine, telemedicine, medical devices, drug development, clinical trials, patient care, mental health, nutrition science, health policy, and the application of medical science to improve human health, wellbeing, and quality of life across diverse populations.

431,843 articles | 751 topics

Social Sciences

Comprehensive investigation of human society, behavior, relationships, and social structures through systematic research and analysis. Encompasses psychology, sociology, anthropology, economics, political science, linguistics, education, demography, communications, and social research methodologies. Examines human cognition, social interactions, cultural phenomena, economic systems, political institutions, language and communication, educational processes, population dynamics, and the complex social, cultural, economic, and political forces shaping human societies, communities, and civilizations throughout history and across the contemporary world.

260,756 articles | 745 topics

Physical Sciences

Fundamental study of the non-living natural world, matter, energy, and physical phenomena governing the universe. Encompasses physics, chemistry, earth sciences, atmospheric sciences, oceanography, materials science, and the investigation of physical laws, chemical reactions, geological processes, climate systems, and planetary dynamics. Explores everything from subatomic particles and quantum mechanics to planetary systems and cosmic phenomena, including energy transformations, molecular interactions, elemental properties, weather patterns, tectonic activity, and the fundamental forces and principles underlying the physical nature of reality.

257,913 articles | 1552 topics

Applied Sciences and Engineering

Practical application of scientific knowledge and engineering principles to solve real-world problems and develop innovative technologies. Encompasses all engineering disciplines, technology development, computer science, artificial intelligence, environmental sciences, agriculture, materials applications, energy systems, and industrial innovation. Bridges theoretical research with tangible solutions for infrastructure, manufacturing, computing, communications, transportation, construction, sustainable development, and emerging technologies that advance human capabilities, improve quality of life, and address societal challenges through scientific innovation and technological progress.

225,386 articles | 998 topics

Scientific Community

Study of the practice, culture, infrastructure, and social dimensions of science itself. Addresses how science is conducted, organized, communicated, and integrated into society. Encompasses research funding mechanisms, scientific publishing systems, peer review processes, academic ethics, science policy, research institutions, scientific collaboration networks, science education, career development, research programs, scientific methods, science communication, and the sociology of scientific discovery. Examines the human, institutional, and cultural aspects of scientific enterprise, knowledge production, and the translation of research into societal benefit.

193,043 articles | 157 topics

Space Sciences

Comprehensive study of the universe beyond Earth, encompassing celestial objects, cosmic phenomena, and space exploration. Includes astronomy, astrophysics, planetary science, cosmology, space physics, astrobiology, and space technology. Investigates stars, galaxies, planets, moons, asteroids, comets, black holes, nebulae, exoplanets, dark matter, dark energy, cosmic microwave background, stellar evolution, planetary formation, space weather, solar system dynamics, the search for extraterrestrial life, and humanity's efforts to explore, understand, and unlock the mysteries of the cosmos through observation, theory, and space missions.

29,662 articles | 175 topics

Research Methods

Comprehensive examination of tools, techniques, methodologies, and approaches used across scientific disciplines to conduct research, collect data, and analyze results. Encompasses experimental procedures, analytical methods, measurement techniques, instrumentation, imaging technologies, spectroscopic methods, laboratory protocols, observational studies, statistical analysis, computational methods, data visualization, quality control, and methodological innovations. Addresses the practical techniques and theoretical frameworks enabling scientists to investigate phenomena, test hypotheses, gather evidence, ensure reproducibility, and generate reliable knowledge through systematic, rigorous investigation across all areas of scientific inquiry.

21,889 articles | 139 topics

Mathematics

Study of abstract structures, patterns, quantities, relationships, and logical reasoning through pure and applied mathematical disciplines. Encompasses algebra, calculus, geometry, topology, number theory, analysis, discrete mathematics, mathematical logic, set theory, probability, statistics, and computational mathematics. Investigates mathematical structures, theorems, proofs, algorithms, functions, equations, and the rigorous logical frameworks underlying quantitative reasoning. Provides the foundational language and tools for all scientific fields, enabling precise description of natural phenomena, modeling of complex systems, and the development of technologies across physics, engineering, computer science, economics, and all quantitative sciences.

3,023 articles | 113 topics

New adaptive optics to support gravitational-wave discoveries

UC Riverside-developed FROSTI system allows precise control of laser wavefronts at extreme power levels, opening a new pathway for gravitational-wave astronomy. This technology expands the universe's view by a factor of 10, potentially detecting millions of black hole and neutron star mergers with unmatched fidelity.

Apple iPhone 17 Pro

Apple iPhone 17 Pro delivers top performance and advanced cameras for field documentation, data collection, and secure research communications.

Optical control of phase and group velocities in everyday liquids

Scientists have discovered a way to turn ordinary liquids into epsilon-near-zero (ENZ) materials by interacting them with intense femtosecond laser pulses. This creates a new class of materials with tunable light propagation properties, opening up possibilities for advances in optical sensing and communication.

Coherence entropy unlocks new insights into light-field behavior

Researchers at Soochow University introduced coherence entropy as a global characterization of light fields subjected to random fluctuations. Coherence entropy remains stable during the propagation of light through complex media, making it a robust indicator of light field behavior in non-ideal conditions.

SAMSUNG T9 Portable SSD 2TB

SAMSUNG T9 Portable SSD 2TB transfers large imagery and model outputs quickly between field laptops, lab workstations, and secure archives.

Innovative method for 3D quantitative phase imaging

Researchers at UCLA have developed a wavelength-multiplexed diffractive optical processor that enables all-optical multiplane quantitative phase imaging. This approach allows for rapid and efficient imaging of specimens across multiple axial planes without the need for digital phase recovery algorithms.

Toroidal vortex streets can stably flow in light

Scientists have successfully created an optical analog of the Kármán vortex street (KVS), a classical flow pattern of swirling vortices. The optical KVS pulse exhibits fascinating parallels with fluid transport, allowing for potential applications in metrology, telecommunications, and LiDAR.

Sorting complex light beams: A breakthrough in optical physics

A groundbreaking study introduces a method for sorting vector structured beams with spin-multiplexed diffractive metasurfaces, promising significant advancements in optical communication and quantum computing. This technology enables precise control over complex light beams, opening new avenues for scientific exploration.

Landmark study is step towards energy-efficient quantum computing in magnets

Researchers at Lancaster University and Radboud University Nijmegen have discovered a novel pathway to modulate and amplify spin waves at the nanoscale, paving the way for dissipation-free quantum information technologies. The study's findings could lead to the development of fast and energy-efficient computing devices.

Kestrel 3000 Pocket Weather Meter

Kestrel 3000 Pocket Weather Meter measures wind, temperature, and humidity in real time for site assessments, aviation checks, and safety briefings.

Synthetic dimension dynamics to manipulate light

Scientists have developed a new method to manipulate light using synthetic dimension dynamics, enabling precise control over light propagation and confinement. This breakthrough has significant implications for applications such as mode lasing, quantum optics, and data transmission.

Programming light propagation creates highly efficient neural networks

Researchers have developed a novel optical neural network architecture that achieves nonlinear optical computation by precisely controlling ultrashort pulse propagation in multimode fibers. This approach streamlines the need for energy-intensive digital processes, achieving comparable accuracy with significantly reduced parameters.

Optical computing boost with diffractive network advance

Researchers extend spatially incoherent diffractive networks to perform complex-valued linear transformations with negligible error, opening up new applications in fields like autonomous vehicles. This breakthrough enables the encryption and decryption of complex-valued images using spatially incoherent diffractive networks.

Sky & Telescope Pocket Sky Atlas, 2nd Edition

Sky & Telescope Pocket Sky Atlas, 2nd Edition is a durable star atlas for planning sessions, identifying targets, and teaching celestial navigation.

Two atoms playing ping-pong

Researchers at TU Wien have developed a 'quantum ping-pong' where two atoms bounce a single photon back and forth. The team used a Maxwell fish-eye lens to achieve pinpoint accuracy, allowing the photons to be transferred from one atom to another with high efficiency.

Optical aspects of quantitative photoacoustic tomography

The review discusses the optical aspects of QPAT, including mathematical models for light propagation and interaction with biological tissues. The authors outline two approaches to estimating chromophore concentrations from absorbed optical energy density data, highlighting the challenges associated with practical implementation, such ...

From PIC to probe

A team of researchers at Ghent University and imec developed a silicon photonic temperature sensor that measures up to 180°C. The sensor was realized in the framework of the European SEER project, where partners focus on integrating optical sensors in manufacturing routines for composite parts.

Apple MacBook Pro 14-inch (M4 Pro)

Apple MacBook Pro 14-inch (M4 Pro) powers local ML workloads, large datasets, and multi-display analysis for field and lab teams.

Revolutionizing optical control with topological edge states

Researchers have developed an innovative approach to efficiently manipulate topological edge states for optical channel switching. By exploiting the finite-size effect in a two-unit-cell optical lattice, they achieved dynamic control over topological modes and demonstrated robust device performance.

Android-based application for photoacoustic tomography image reconstruction

A mobile application utilizing Python and a single-element ultrasound transducer has been developed for photoacoustic tomography (PAT) image reconstruction. The application successfully reconstructs high-quality images with signal-to-noise ratio values above 30 decibels, making it suitable for point-of-care diagnosis in low-resource se...

New microchip links two Nobel Prize-winning techniques

Physicists at Delft University of Technology have developed a new technology on a microchip combining optical trapping and frequency combs to measure distances with high precision in opaque materials. The technology uses sound vibrations instead of light, offering a simple and low-power solution for applications such as monitoring the ...

Using optics to trace the flow of microplastics in oceans

Researchers from China and Singapore study the radiative properties of polyamide-12, a common marine microplastic pollutant. They found that most of the incident radiation is scattered by PA12 particles, affecting ocean light transmission and marine ecology.

Reduced speckle on the horizon

Researchers have demonstrated an easy method to alter VCSELs to reduce speckles, improving their suitability for applications like lighting and holography. By changing the device shape, they introduced chaotic behavior, allowing more modes to be emitted and reducing speckle density.

Anker Laptop Power Bank 25,000mAh (Triple 100W USB-C)

Anker Laptop Power Bank 25,000mAh (Triple 100W USB-C) keeps Macs, tablets, and meters powered during extended observing runs and remote surveys.

Hotter than infinity – light pulses can behave like an exotic gas

Researchers at the Universities of Jena and Central Florida have created a photon gas that exhibits behavior similar to a conventional gas, with particles moving at different speeds but maintaining a mean velocity defined by temperature. This phenomenon, known as negative temperature, can be cooled or heated, allowing for the creation ...

Nikon Monarch 5 8x42 Binoculars

Nikon Monarch 5 8x42 Binoculars deliver bright, sharp views for wildlife surveys, eclipse chases, and quick star-field scans at dark sites.

Light shaped as a smoke ring behaves like a particle

Researchers report the discovery of photonic hopfions, a new family of 3D topological solitons with freely tunable textures and numbers. These structures exhibit robust topological protection, making them suitable for applications in optical communications, quantum technologies, and metrology.

Searching for the earliest galaxies in the universe

A team of astronomers discovered 87 galaxies that could be the earliest known galaxies in the universe using data from NASA's James Webb Space Telescope. This finding suggests a revision to our understanding of galaxy formation, indicating that more galaxies may have formed earlier than previously thought.

Garmin GPSMAP 67i with inReach

Garmin GPSMAP 67i with inReach provides rugged GNSS navigation, satellite messaging, and SOS for backcountry geology and climate field teams.

University of Ottawa researchers solve 20-year-old optical light mystery

Researchers at the University of Ottawa have developed a new technique to differentiate the mirror images of a chiral molecule, a problem that was believed to be unsolvable for nearly 20 years. The team used linear polarized helical light beams to enhance sensitivity and observed differential absorption in achiral molecules.

Higher speeds in free-space optical communications in the midinfrared band

Researchers developed high-capacity free-space optical links using unipolar quantum optoelectronic devices, achieving unprecedented data rates of up to 30 Gbit/s at 31-meter distances. The system's performance is resistant to weather conditions and showcases potential for fast, long-range optical links.

Overcoming the optical resolution limit

Researchers from the University of Kassel developed an approach to extend the limits of interferometric topography measurements for optical resolution below small structures. Microsphere assistance enables fast and label-free imaging without requiring extensive sample preparation.

Rigol DP832 Triple-Output Bench Power Supply

Rigol DP832 Triple-Output Bench Power Supply powers sensors, microcontrollers, and test circuits with programmable rails and stable outputs.

Optical foundations illuminated by quantum light

A team at Tampere University has demonstrated that quantum waves behave differently from classical counterparts, increasing the precision of distance measurements. Their findings also shed light on the physical origin of the Gouy phase anomaly in focused light fields.

GoPro HERO13 Black

GoPro HERO13 Black records stabilized 5.3K video for instrument deployments, field notes, and outreach, even in harsh weather and underwater conditions.

Creating invisibility with superconducting materials

Researchers have discovered a new material, α-MoO3, that can be used to create invisibility concentrators with improved performance and lower production costs. The study suggests the use of α-MoO3 to control energy flow and scatter light, enabling the creation of devices with near-perfect invisibility.

Twisted bilayer graphene dances with light

Researchers have discovered that twisted bilayer graphene can guide and control light at the nanometer scale due to its unique interaction with collective electron movements. This property enables the material to be used as a platform for optical sensing of gases and bio-molecules.

Sony Alpha a7 IV (Body Only)

Sony Alpha a7 IV (Body Only) delivers reliable low-light performance and rugged build for astrophotography, lab documentation, and field expeditions.

A traffic light for light-on-a-chip

A team of researchers at EPFL and Purdue University has developed a magnetic-free optical isolator using integrated photonics and micro-electromechanical systems. This device can couple to and deflect light propagating in a waveguide, mimicking the effects of magnet-driven isolators without requiring magnetic fields.

CCNY researchers announce photon-phonon breakthrough

Researchers at City College of New York have combined topological photons with lattice vibrations to manipulate their propagation in a controlled manner. The study has broad implications for advancing Raman spectroscopy and studying chemical substances through vibrational spectroscopy.

Sandwich-style construction: Towards ultra-low-energy exciton electronics

Australian researchers have made a significant step towards ultra-low energy electronics by demonstrating the dissipationless flow of exciton polaritons at room temperature. The breakthrough involves placing a semiconductor material between two mirrors, allowing the excitons to propagate without losing energy.

Russian physicists mix classical light with half a photon on a qubit

A Russian-U.K. research team has proposed a theoretical description for the new effect of quantum wave mixing involving classical and nonclassical states of microwave radiation. The study builds on earlier experiments on artificial atoms, which serve as qubits for quantum computers and probes fundamental laws of nature.

Creality K1 Max 3D Printer

Creality K1 Max 3D Printer rapidly prototypes brackets, adapters, and fixtures for instruments and classroom demonstrations at large build volume.

Near-field routing of hyperbolic metamaterials

Hyperbolic metamaterials enable subwavelength confinement of electromagnetic waves, allowing for flexible control of near-field light propagation. The researchers used an all-electric scheme to selectively couple near-field light in HMMs, enabling unidirectional excitation of hyperbolic modes.

Tailored light inspired by nature

A team of international researchers developed propagation-invariant light fields using caustics that do not change during propagation. This breakthrough enables new applications in high-resolution microscopy, material processing, and multidimensional signal transmission.

CalDigit TS4 Thunderbolt 4 Dock

CalDigit TS4 Thunderbolt 4 Dock simplifies serious desks with 18 ports for high-speed storage, monitors, and instruments across Mac and PC setups.

Hollow-core fiber raises prospects for next-generation scientific instruments

Researchers have developed hollow-core fibers that can preserve light's essential attributes over long distances, overcoming challenges in optical interferometric systems and sensors. The technology has the potential to enhance performance in applications such as gravitational wave sensing and inertial navigation.

Topology protects light propagation in photonic crystal

Researchers have successfully observed topologically protected light waves propagating along a special boundary in a photonic crystal, unaffected by sharp corners or imperfections. This breakthrough enables the development of optical chips with enhanced reliability and potential for quantum information transfer.

Space-time metasurface makes light reflect only in one direction

Researchers create a new type of optical metasurface that imposes phase modulation on reflected light, leading to unidirectional light propagation. The metasurface enables nonreciprocal light propagation in free space with unprecedented large temporal modulation frequency.

AmScope B120C-5M Compound Microscope

AmScope B120C-5M Compound Microscope supports teaching labs and QA checks with LED illumination, mechanical stage, and included 5MP camera.

Scientists developed a material for the new type of liquid crystal displays

Researchers from Lomonosov Moscow State University and their international colleagues created a ferroelectric liquid crystal material that outperforms traditional LCDs in terms of speed, stability, and color accuracy. This breakthrough enables faster and more efficient displays with improved resolution and reduced energy consumption.

Basque researchers turn light upside down

Researchers created a hyperbolic metasurface using boron nitride that produces concave wavefronts with infrared light, revolutionizing the miniaturization of sensing and signal processing devices. The team overcame fabrication challenges to achieve precision structuring on the nanometer scale.

Fluke 87V Industrial Digital Multimeter

Fluke 87V Industrial Digital Multimeter is a trusted meter for precise measurements during instrument integration, repairs, and field diagnostics.

Now entering, lithium niobate valley

Harvard researchers have developed a technique to fabricate high-quality lithium niobate devices with ultralow loss and high optical confinement. This breakthrough opens the door to practical integrated photonic circuits for applications in quantum photonics, microwave-to-optical conversion, and more.

Midwife and signpost for photons

Researchers from the University of Würzburg have developed a new set of rules for creating optical antennas that can precisely control photon creation and emission direction. This breakthrough has the potential to enable tiny, multifunctional light pixels and reliable single-photon sources for quantum computers and optical microscopes.