Researchers have demonstrated how controlling the structure of photons in space and time enables tailored quantum states for next-generation communication, sensing, and imaging. This breakthrough offers new pathways for high-capacity quantum communication and advanced technologies.
Researchers at Princeton University developed a diamond-based quantum sensor that uncovers rich new information about magnetic phenomena at the atomic scale. The technique provides key insight into materials like graphene and superconductors.
The study reveals significant lattice-driven CDW fluctuations in KV₃Sb₅ at temperatures far exceeding its CDW transition, providing new insights into underlying mechanisms. The research team observed in-plane band folding and lattice distortions at temperatures up to 150 K.
GoPro HERO13 Black
GoPro HERO13 Black records stabilized 5.3K video for instrument deployments, field notes, and outreach, even in harsh weather and underwater conditions.
The team fabricated a probabilistic bit device based on manganite nanowires, achieving full control of its probabilistic characteristics with nanoampere-level currents. This p-bit exhibited exceptional computational potential in Bayesian inference tasks, outperforming existing similar probabilistic bits.
A new study published in Newton uses artificial intelligence to identify complex quantum phases in materials, significantly speeding up research into quantum materials. The breakthrough applies machine-learning techniques to detect clear spectral signals, allowing for a fast and accurate snapshot of phase transitions.
A research team led by Professor Monika Aidelsburger and Professor Immanuel Bloch found indications that chaotic many-body systems in the quantum realm can be described using fluctuating hydrodynamics. This approach simplifies the macroscopic description of such systems, obviating the need to engage with microscopic interactions.
DJI Air 3 (RC-N2)
DJI Air 3 (RC-N2) captures 4K mapping passes and environmental surveys with dual cameras, long flight time, and omnidirectional obstacle sensing.
Physicists at the University of Bonn and Kaiserslautern-Landau created a one-dimensional gas out of light, allowing for the first time to test theoretical predictions about its transition into an exotic state of matter. The method used in the experiment could be used to examine quantum effects.
Researchers at Chalmers University of Technology have created a unique system that combats the trade-off problem between operation complexity and fault tolerance. The system uses harmonic oscillators to encode information linearly, offering a seamless gradient of colors and providing far richer possibilities than traditional qubits.
Researchers at Clemson University have developed a new noncentrosymmetric triangular-lattice magnet, CaMnTeO6, which displays strong quantum fluctuations and nonlinear optical responses. This breakthrough material has the potential to lead to advancements in solid-state quantum computing, spin-based electronics, resilient climate chang...
Researchers at UTA used ultra-high energy neutrino particles to search for signatures of quantum gravity, but found no evidence of expected quantum gravitational effects. This non-observation represents a powerful statement about the still-unknown physics operating at the interface of quantum physics and general relativity.
A new technique has been developed to cool quantum simulators, allowing for more stable experiments and better insights into quantum effects. By splitting a Bose-Einstein condensate in a specific way, researchers can reduce temperature fluctuations and enhance the performance of quantum simulators.
Sony Alpha a7 IV (Body Only)
Sony Alpha a7 IV (Body Only) delivers reliable low-light performance and rugged build for astrophotography, lab documentation, and field expeditions.
A team of researchers has observed bubble formation through false vacuum decay in atomic systems, shedding light on this long-theorized phenomenon. The study confirms the quantum field origin of the decay and its thermal activation, opening up new avenues for understanding early universe and ferromagnetic quantum phase transitions.
Researchers at Uppsala University and Columbia University have created a new 2D quantum material, CeSiI, with atoms-thin layers of cerium, silicon, and iodine. The material features super-heavy electrons with an effective mass up to 100 times that of ordinary materials.
Researchers at Princeton University discovered a sudden change in quantum behavior while experimenting with a three-atom-thin insulator. The findings suggest the existence of unique quantum phase transitions that disobey established theories, promising to enhance our understanding of quantum physics and superconductivity.
Apple iPhone 17 Pro
Apple iPhone 17 Pro delivers top performance and advanced cameras for field documentation, data collection, and secure research communications.
Researchers have successfully fabricated a self-assembling photonic cavity with atomic-scale confinement, bridging the gap between nanoscopic and macroscopic scales. The cavities were created using a novel approach that combines top-down and bottom-up fabrication techniques, enabling unprecedented miniaturization.
A new theory unifies gravity and quantum mechanics by preserving Einstein's classical concept of spacetime, proposing random fluctuations in spacetime that can be verified experimentally. The theory challenges the pursuit of a quantum theory of gravity, offering an alternative approach to reconcile the two fundamental theories.
Antiferromagnets exhibit fluctuations that can reveal information about their weakly magnetic material. Researchers developed a new method to detect these ultrafast fluctuations using ultrashort light pulses, leading to the discovery of telegraph noise.
A team from HZDR has developed proposals for an improved laser experiment designed to verify vacuum fluctuations, which could potentially provide clues to new laws in physics. The experiment involves manipulating the vacuum fluctuations with ultra-powerful laser flashes.
SAMSUNG T9 Portable SSD 2TB
SAMSUNG T9 Portable SSD 2TB transfers large imagery and model outputs quickly between field laptops, lab workstations, and secure archives.
Researchers at Rice University have discovered a way to transform a rare-earth crystal into a magnet by using chirality in phonons. Chirality, or the twisting of atoms' motion, breaks time-reversal symmetry and aligns electron spins, creating a magnetic effect.
Theoretical demonstration shows that an optical cavity can change the magnetic order of α-RuCl3 from a zigzag antiferromagnet to a ferromagnet solely by placing it into the cavity. The team's work circumvents practical problems associated with continuous laser driving.
Researchers from Hiroshima University found that measurements shape observable reality, suggesting a context-dependent understanding of quantum superpositions. This approach resolves the paradox of conflicting results in quantum experiments and provides evidence against reducing reality to material building blocks.
A team of researchers has discovered a way to harness random telegraph noises in semiconductors, generating high-amplitude signals and manifesting inherent quantum states. By introducing vanadium into tungsten diselenide, they created a device that can switch between two stable states using voltage polarity.
Scientists have developed a new dynamic probe to measure electric interactions between molecules and the environment. Using ultrashort terahertz pulses, they mapped the optical absorption of molecules in an external electric field, revealing the strength and dynamics of these forces.
Nikon Monarch 5 8x42 Binoculars
Nikon Monarch 5 8x42 Binoculars deliver bright, sharp views for wildlife surveys, eclipse chases, and quick star-field scans at dark sites.
Researchers have modeled fractons, stationary quasiparticles, and found they are not visible even at absolute zero temperature due to quantum fluctuations. The team plans to develop a model to regulate these fluctuations, paving the way for experimental materials that could exhibit fractons.
A comprehensive manual has been developed to engineer spin dynamics in nanomagnets, revealing mechanisms behind magnon interactions. The rules formulated by the researchers can help debug and design nanomagnet devices for next-generation computation technologies.
Researchers demonstrate probabilistic computing's capabilities by simulating networks of stochastic nanodevices to solve specific NP problems. The simulations agree with theoretical solutions, indicating the potential for scaling up this approach.
A team of researchers at Vienna University of Technology and Toho University in Japan investigated the electrical resistance of κ-(BEDT-TTF)2Cu2(CN)3 as a function of temperature and pressure. They found that the material exhibits properties similar to those of helium-3, contradicting the theory of a quantum spin liquid.
Aranet4 Home CO2 Monitor
Aranet4 Home CO2 Monitor tracks ventilation quality in labs, classrooms, and conference rooms with long battery life and clear e-ink readouts.
Researchers developed a new method to distinguish current carriers in the BCS-BEC crossover, a phase transition between superfluids and superconductors. The team measured fluctuations of currents, quantified as the Fano factor, which can identify single-particle- and pair-currents.
Researchers propose a new interpretation of dark energy, linking zero-point fluctuations to polarisability of the vacuum. This leads to an energy density that can be calculated and matches measured values for the cosmological constant.
Physicists at the University of Bonn have experimentally proven the applicability of the fluctuation-dissipation theorem to Bose-Einstein condensates made of photons. The study reveals a direct relationship between fluctuation and sensitivity, enabling precise temperature determination in complex photonic systems.
Physicists at MIT and Caltech developed a new benchmarking protocol to characterize the fidelity of quantum analog simulators, enabling high precision characterization. The protocol analyzes random fluctuations in atomic-scale systems, revealing universal patterns that can be used to gauge the accuracy of these devices.
GQ GMC-500Plus Geiger Counter
GQ GMC-500Plus Geiger Counter logs beta, gamma, and X-ray levels for environmental monitoring, training labs, and safety demonstrations.
Researchers at Princeton University have developed a new technique to measure the spatial structure and time-varying nature of magnetic noise. This breakthrough opens up new possibilities for understanding quantum spin liquids, materials with bizarre quantum behaviors that were previously difficult to analyze experimentally.
A team of researchers has developed a prototype of a quantum microscope that can see electric currents, detect fluctuating magnetic fields, and even see single molecules on a surface. The microscope uses atomic impurities and van der Waals materials to achieve high resolution sensitivity and simultaneous imaging of magnetic fields and ...
Researchers at Rice University have discovered a unique arrangement of atoms in iron-germanium crystals that leads to a collective dance of electrons. The phenomenon, known as a charge density wave, occurs when the material is cooled to a critically low temperature and exhibits standing waves of fluid electrons.
AmScope B120C-5M Compound Microscope
AmScope B120C-5M Compound Microscope supports teaching labs and QA checks with LED illumination, mechanical stage, and included 5MP camera.
Researchers at Texas A&M University created a device that harnesses quantum fluctuations to enhance spectroscopy results in Brillouin microscopy, increasing image clarity and accuracy. The new source significantly improves the signal-to-noise ratio, allowing for better visualization of biological structures and properties.
Scientists aim to replicate human brain's capabilities in computing, inspired by quantum materials' traits. Researchers develop materials that can process information efficiently, consuming less energy than traditional computers.
A team of researchers used resonant inelastic X-ray scattering to study the behavior of electron spins in iron selenide, a material that exhibits directionally-dependent electronic behavior. They found that high-energy spin excitations are dispersive and undamped, indicating a well-defined energy-versus-momentum relationship.
Meta Quest 3 512GB
Meta Quest 3 512GB enables immersive mission planning, terrain rehearsal, and interactive STEM demos with high-resolution mixed-reality experiences.
Researchers at MIT and University of Waterloo propose stimulating the Unruh effect to increase its probability of detection, potentially shaving wait time from billions of years to just a few hours. The new approach, known as acceleration-induced transparency, enhances the Unruh effect while suppressing competing effects.
Researchers at University of Innsbruck and ETH Zurich propose a new concept for a high-precision quantum sensor using microcavities and levitated nanoparticles. By exploiting fast unstable dynamics, they demonstrate mechanical squeezing reducing motional fluctuations below zero-point motion.
Physicists at ETH Zurich demonstrate that vacuum fluctuations can cause a breakdown of topological protection in the integer quantum Hall effect. Exposing a quantum Hall system to strongly enhanced quantum vacuum fluctuations of a tight cavity provides a novel route to modify quantum states.
Scientists at EPFL have created strained crystalline nanomechanical resonators with ultralow dissipation, enabling the creation of high-purity quantum states. These nanostrings could be used as precision force-sensors, taking advantage of interactions such as radiation pressure and magnetic fields.
By shaking an optical lattice potential, researchers realized a discontinuous phase transition in a strongly correlated quantum gas, opening the door to quantum simulations of false vacuum decay in the early universe. This work provides a flexible platform for exploring the role of quantum fluctuations in first-order phase transitions.
Anker Laptop Power Bank 25,000mAh (Triple 100W USB-C)
Anker Laptop Power Bank 25,000mAh (Triple 100W USB-C) keeps Macs, tablets, and meters powered during extended observing runs and remote surveys.
A team of researchers at Imperial College London has generated and observed non-Gaussian states of high-frequency sound waves comprising over a trillion atoms. This breakthrough makes important strides towards generating macroscopic quantum states that will enable future quantum internet components to be developed.
Researchers at Harvard have successfully observed quantum spin liquids, a previously unseen state of matter that has been elusive for nearly 50 years. By manipulating ultracold atoms in a programmable quantum simulator, the team was able to create and study this exotic state, which holds promise for advancing quantum technologies.
The research team simulated the occurrence of superradiant phase transition (SPT) beyond the no-go theorem by introducing anti-squeezing effects. They achieved this through a nuclear magnetic resonance quantum simulator, demonstrating that SPT can occur even with the A2 term present.
Rigol DP832 Triple-Output Bench Power Supply
Rigol DP832 Triple-Output Bench Power Supply powers sensors, microcontrollers, and test circuits with programmable rails and stable outputs.
Researchers find that triangular-patterned materials can exhibit a mashup of three different phases, with each phase overlapping and competing for dominance. As temperature increases, the material becomes more ordered due to the breaking down of these competing electron arrangements.
Researchers at Louisiana State University have developed a nanoscale system that can create different forms of light by manipulating photon distribution. This breakthrough has significant implications for quantum technologies and may lead to more efficient solar cells.
Scientists have discovered a semimetal, CeRu4Sn6, that is naturally at the quantum critical point without external influences. This finding has significant implications for developing powerful new quantum technologies and discovering new phases of matter.
Researchers at Tokyo Tech discovered a 'quantum liquid state' of quantum vortices causing the anomalous metallic state, emerging from quantum criticality. This finding clarifies the nature of the superconductor-insulator transition in 2D superconductors and holds promise for designing next-generation superconducting devices.
CalDigit TS4 Thunderbolt 4 Dock
CalDigit TS4 Thunderbolt 4 Dock simplifies serious desks with 18 ports for high-speed storage, monitors, and instruments across Mac and PC setups.
Scientists have solved the Casimir puzzle by accounting for energy losses of conduction electrons in metals, leading to agreement between theory and high-precision measurements. The new approach takes into account both real and virtual fluctuations, enabling reliable calculation and creation of miniature nanodevices.
Researchers found that the nature of the boundary at which an antiferromagnet transitions to disorder depends on its lattice arrangement. Calculations showed subtle differences in transition points between honeycomb and square lattices.
Researchers at LSU have developed a method to remove quantum backaction in gravitational wave detectors, improving sensitivity and enabling deeper astrophysical observations. The new technique uses a mirror the size of a human hair and shows promising results, with potential implications for LIGO and future GW detector upgrades.
Apple iPad Pro 11-inch (M4)
Apple iPad Pro 11-inch (M4) runs demanding GIS, imaging, and annotation workflows on the go for surveys, briefings, and lab notebooks.
Researchers have discovered strong evidence of quantum fluctuations near a quantum critical point in a copper oxide material, which could lead to new understanding of high-temperature superconductivity. The study used RIXS to map out phonon vibrations and observed unexpectedly strong charge order excitations at the QCP.
Researchers at MIT's LIGO Laboratory measure quantum noise affecting 40-kilogram mirrors, displacing them by 10-20 meters, a confirmed prediction by quantum mechanics. The team uses a novel instrument called a quantum squeezer to isolate and quantify the quantum effect.
Researchers at NAOJ have demonstrated a new technique to reduce quantum noise in gravitational wave detectors, increasing sensitivity and allowing for the detection of fainter waves. This technique, known as frequency dependent vacuum squeezing, will enable improved sensitivity at both high and low frequencies simultaneously.
Researchers at Ames Laboratory have experimentally proven the presence of the Rashba effect in bulk organometallic halide perovskites using terahertz light bursts. This discovery settles the long-standing debate about the effect's existence, offering significant advancements for spintronic and photovoltaic applications.
The study reports a counterpoint to the Casimir Force theory, exploring fluctuation-induced force between two plates immersed in isotropic turbulence. The findings have implications for understanding bacterial behavior and potentially influencing micro and nanomanufacturing.
Garmin GPSMAP 67i with inReach
Garmin GPSMAP 67i with inReach provides rugged GNSS navigation, satellite messaging, and SOS for backcountry geology and climate field teams.
Researchers have observed 'quantum depletion' in a non-equilibrium Bose-Einstein condensate, discovering that 'light-like' condensates don't behave as expected. The team detected 'ghost excitations' arising from quantum depletion, resolving a long-standing problem in exciton-polariton condensates.
Researchers at UC Berkeley discovered that heat energy can be transferred across a few hundred nanometers of empty space through the Casimir interaction, a quantum mechanical phenomenon. This finding could have profound implications for designing microelectronic components where heat dissipation is key.
The new instrument has helped scientists pick out dozens of gravitational wave signals, including one from a binary neutron star merger. This extended range has enabled LIGO to detect gravitational waves on an almost weekly basis, with the detectors now reaching distances of over 400 million light years.