Bluesky Facebook Reddit Email

Life Sciences

Comprehensive exploration of living organisms, biological systems, and life processes across all scales from molecules to ecosystems. Encompasses cutting-edge research in biology, genetics, molecular biology, ecology, biochemistry, microbiology, botany, zoology, evolutionary biology, genomics, and biotechnology. Investigates cellular mechanisms, organism development, genetic inheritance, biodiversity conservation, metabolic processes, protein synthesis, DNA sequencing, CRISPR gene editing, stem cell research, and the fundamental principles governing all forms of life on Earth.

447,757 articles | 2542 topics

Health and Medicine

Comprehensive medical research, clinical studies, and healthcare sciences focused on disease prevention, diagnosis, and treatment. Encompasses clinical medicine, public health, pharmacology, epidemiology, medical specialties, disease mechanisms, therapeutic interventions, healthcare innovation, precision medicine, telemedicine, medical devices, drug development, clinical trials, patient care, mental health, nutrition science, health policy, and the application of medical science to improve human health, wellbeing, and quality of life across diverse populations.

431,843 articles | 751 topics

Social Sciences

Comprehensive investigation of human society, behavior, relationships, and social structures through systematic research and analysis. Encompasses psychology, sociology, anthropology, economics, political science, linguistics, education, demography, communications, and social research methodologies. Examines human cognition, social interactions, cultural phenomena, economic systems, political institutions, language and communication, educational processes, population dynamics, and the complex social, cultural, economic, and political forces shaping human societies, communities, and civilizations throughout history and across the contemporary world.

260,756 articles | 745 topics

Physical Sciences

Fundamental study of the non-living natural world, matter, energy, and physical phenomena governing the universe. Encompasses physics, chemistry, earth sciences, atmospheric sciences, oceanography, materials science, and the investigation of physical laws, chemical reactions, geological processes, climate systems, and planetary dynamics. Explores everything from subatomic particles and quantum mechanics to planetary systems and cosmic phenomena, including energy transformations, molecular interactions, elemental properties, weather patterns, tectonic activity, and the fundamental forces and principles underlying the physical nature of reality.

257,913 articles | 1552 topics

Applied Sciences and Engineering

Practical application of scientific knowledge and engineering principles to solve real-world problems and develop innovative technologies. Encompasses all engineering disciplines, technology development, computer science, artificial intelligence, environmental sciences, agriculture, materials applications, energy systems, and industrial innovation. Bridges theoretical research with tangible solutions for infrastructure, manufacturing, computing, communications, transportation, construction, sustainable development, and emerging technologies that advance human capabilities, improve quality of life, and address societal challenges through scientific innovation and technological progress.

225,386 articles | 998 topics

Scientific Community

Study of the practice, culture, infrastructure, and social dimensions of science itself. Addresses how science is conducted, organized, communicated, and integrated into society. Encompasses research funding mechanisms, scientific publishing systems, peer review processes, academic ethics, science policy, research institutions, scientific collaboration networks, science education, career development, research programs, scientific methods, science communication, and the sociology of scientific discovery. Examines the human, institutional, and cultural aspects of scientific enterprise, knowledge production, and the translation of research into societal benefit.

193,043 articles | 157 topics

Space Sciences

Comprehensive study of the universe beyond Earth, encompassing celestial objects, cosmic phenomena, and space exploration. Includes astronomy, astrophysics, planetary science, cosmology, space physics, astrobiology, and space technology. Investigates stars, galaxies, planets, moons, asteroids, comets, black holes, nebulae, exoplanets, dark matter, dark energy, cosmic microwave background, stellar evolution, planetary formation, space weather, solar system dynamics, the search for extraterrestrial life, and humanity's efforts to explore, understand, and unlock the mysteries of the cosmos through observation, theory, and space missions.

29,662 articles | 175 topics

Research Methods

Comprehensive examination of tools, techniques, methodologies, and approaches used across scientific disciplines to conduct research, collect data, and analyze results. Encompasses experimental procedures, analytical methods, measurement techniques, instrumentation, imaging technologies, spectroscopic methods, laboratory protocols, observational studies, statistical analysis, computational methods, data visualization, quality control, and methodological innovations. Addresses the practical techniques and theoretical frameworks enabling scientists to investigate phenomena, test hypotheses, gather evidence, ensure reproducibility, and generate reliable knowledge through systematic, rigorous investigation across all areas of scientific inquiry.

21,889 articles | 139 topics

Mathematics

Study of abstract structures, patterns, quantities, relationships, and logical reasoning through pure and applied mathematical disciplines. Encompasses algebra, calculus, geometry, topology, number theory, analysis, discrete mathematics, mathematical logic, set theory, probability, statistics, and computational mathematics. Investigates mathematical structures, theorems, proofs, algorithms, functions, equations, and the rigorous logical frameworks underlying quantitative reasoning. Provides the foundational language and tools for all scientific fields, enabling precise description of natural phenomena, modeling of complex systems, and the development of technologies across physics, engineering, computer science, economics, and all quantitative sciences.

3,023 articles | 113 topics

Quantum jam sessions teach quantum and jamming

Kobe University's new web application combines quantum game theory with jazz improvisation to explore creativity. Users can interact in a 'quantum jam session', receiving real-time visual and auditory feedback on their strategies.

Next-generation quantum communication

The researchers have successfully demonstrated a four-dimensional QKD system with high efficiency and low measurement error rates. This breakthrough enables secure data transmission over long distances, with potential applications in fields such as finance and government.

Magically reducing errors in quantum computers

Researchers from The University of Osaka develop a method to prepare high-fidelity 'magic states' for use in quantum computers with less overhead and unprecedented accuracy. This breakthrough aims to overcome the significant obstacle of noise in quantum systems, which can ruin computer setups.

Fluke 87V Industrial Digital Multimeter

Fluke 87V Industrial Digital Multimeter is a trusted meter for precise measurements during instrument integration, repairs, and field diagnostics.

New quantum navigation device uses atoms to measure acceleration in 3D

Physicists at the University of Colorado Boulder have developed a new type of atom interferometer that can measure acceleration in three dimensions. The device, which employs six lasers and artificial intelligence, has the potential to revolutionize navigation technology by providing accurate measurements in complex environments.

Hot Schrödinger cat states created

Scientists from University of Innsbruck successfully created hot Schrödinger cat states at temperatures up to 1.8 Kelvin, challenging the notion that high temperature destroys quantum effects. This breakthrough opens new opportunities for quantum technologies in warmer environments.

A quantum superhighway for ultrafast NOON states

Researchers at University of Liège have developed a method for rapidly creating NOON states with ultra-cold atoms, accelerating the process by a factor of 10,000 while maintaining high fidelity. This breakthrough opens up prospects in quantum metrology and quantum information technologies.

New ocelot chip makes strides in quantum computing

Researchers at AWS and Caltech developed a new cat qubit chip, called Ocelot, to suppress errors in quantum computers. The chip uses superconducting circuits to create stable qubits resistant to bit-flip errors.

Creality K1 Max 3D Printer

Creality K1 Max 3D Printer rapidly prototypes brackets, adapters, and fixtures for instruments and classroom demonstrations at large build volume.

One-dimensional perovskite lattice tilts & stretches to stabilize excitons

Researchers demonstrated the existence of an Exciton-Polaron in a quasi-one-dimensional hybrid perovskitoid, showcasing its potential for optoelectronic applications. The study reveals that the one-dimensional lattice is soft and susceptible to reorganization, enabling tunable frameworks for new quantum technologies.

Novel quantum materials in the spotlight

German physicist Christian Schneider has been awarded a European Research Council Consolidator Grant to study the optical properties of two-dimensional materials. His team plans to develop experimental set-ups to investigate the unique properties of these materials, which could lead to new applications in quantum technologies.

Long-lived Schrödinger-cat state achieves Heisenberg-limited sensitivity

Scientists have successfully created a Schrödinger-cat state with a minute-scale lifetime, significantly enhancing quantum metrology measurement sensitivity. The long-lived state exhibits enhanced magnetic field sensitivity and is immune to intensity noise and spatial variations of the optical lattice.

Celestron NexStar 8SE Computerized Telescope

Celestron NexStar 8SE Computerized Telescope combines portable Schmidt-Cassegrain optics with GoTo pointing for outreach nights and field campaigns.

How fast is quantum entanglement?

Researchers at TU Wien have developed computer simulations to investigate the temporal development of quantum entanglement. They found that the 'birth time' of an electron flying away from an atom is related to the state of the remaining electron, demonstrating a quantum-physical superposition.

Neutrons on classically inexplicable paths

Researchers used neutron beams to test the Leggett-Garg inequality, a formula that challenges macroscopic realism. The results show that classical explanations are not possible, confirming quantum theory's strange properties.

Breakthrough may clear major hurdle for quantum computers

Researchers at Chalmers University of Technology have created a unique system that combats the trade-off problem between operation complexity and fault tolerance. The system uses harmonic oscillators to encode information linearly, offering a seamless gradient of colors and providing far richer possibilities than traditional qubits.

Sony Alpha a7 IV (Body Only)

Sony Alpha a7 IV (Body Only) delivers reliable low-light performance and rugged build for astrophotography, lab documentation, and field expeditions.

New super-pure silicon chip opens path to powerful quantum computers

Researchers at the University of Melbourne and Manchester have invented a breakthrough technique for manufacturing highly purified silicon, making it ideal for creating powerful quantum computers. The new technique uses qubits of phosphorous atoms implanted into crystals of pure stable silicon, extending the duration of notoriously fra...

100 kilometers of quantum-encrypted transfer

Scientists have made significant breakthroughs in Quantum Key Distribution (QKD) technology, enabling secure data transfer over long distances. The new method uses Continuous Variable Quantum Key Distribution to distribute quantum-encrypted keys via fibre optic cables, paving the way for a quantum-secure internet infrastructure.

PPPL unveils new laboratory space to advance quantum information science

The Princeton Plasma Physics Laboratory has opened a new Quantum Diamond Lab to study plasma processes for creating diamond material with unique properties. Scientists aim to harness this material for quantum computing, secure communication, and precise measurements, enabling breakthroughs in fields like medicine and energy.

SAMSUNG T9 Portable SSD 2TB

SAMSUNG T9 Portable SSD 2TB transfers large imagery and model outputs quickly between field laptops, lab workstations, and secure archives.

A physical qubit with built-in error correction

A team of researchers from the universities of Mainz, Olomouc, and Tokyo has successfully generated a logical qubit from a single light pulse that can correct errors. This breakthrough uses a photon-based approach to overcome the limitations of current quantum computing technology.

Lights, detector, action!

Researchers at Kyoto University have developed a novel method for quantum infrared spectroscopy, generating a wider range of infrared photons with improved sensitivity. This breakthrough enables compact, high-performance scanners for various applications in environmental monitoring, medicine, and security.

Observing macroscopic quantum effects in the dark

Researchers from the University of Innsbruck propose an experiment to observe macroscopic quantum effects in a dark potential created by electrostatic or magnetic forces. By letting a cooled nanoscale glass sphere evolve in this non-optical environment, they aim to rapidly generate a macroscopic quantum superposition state.

New theory unites Einstein’s gravity with quantum mechanics

A new theory unifies gravity and quantum mechanics by preserving Einstein's classical concept of spacetime, proposing random fluctuations in spacetime that can be verified experimentally. The theory challenges the pursuit of a quantum theory of gravity, offering an alternative approach to reconcile the two fundamental theories.

Aranet4 Home CO2 Monitor

Aranet4 Home CO2 Monitor tracks ventilation quality in labs, classrooms, and conference rooms with long battery life and clear e-ink readouts.

Do measurements produce the reality they show us?

Researchers from Hiroshima University found that measurements shape observable reality, suggesting a context-dependent understanding of quantum superpositions. This approach resolves the paradox of conflicting results in quantum experiments and provides evidence against reducing reality to material building blocks.

A new type of quantum bit in semiconductor nanostructures

A German-Chinese research team has successfully created a quantum bit in a semiconductor nanostructure by exciting a superposition state with two short-wavelength optical laser pulses. This achievement demonstrates coherent control of a high-orbital hole in a semiconductor quantum dot.

Schrödinger’s cat makes better qubits

Researchers have developed a novel encoding scheme called critical Schrödinger cat code, which could revolutionize the reliability of quantum computers. This technique uses a hybrid regime to operate close to the critical point of a phase transition, resulting in enhanced error suppression capabilities.

DJI Air 3 (RC-N2)

DJI Air 3 (RC-N2) captures 4K mapping passes and environmental surveys with dual cameras, long flight time, and omnidirectional obstacle sensing.

When the light is neither "on" nor "off" in the nanoworld

Researchers from Würzburg and Bielefeld successfully detect exotic states of quantum physics in a nanostructure, where light can exist as both on and off at the same time. This breakthrough enables the development of novel optical quantum technologies for future computer chips.

Can you trust your quantum simulator?

Physicists at MIT and Caltech developed a new benchmarking protocol to characterize the fidelity of quantum analog simulators, enabling high precision characterization. The protocol analyzes random fluctuations in atomic-scale systems, revealing universal patterns that can be used to gauge the accuracy of these devices.

Dawn of solid-state quantum networks

Researchers demonstrated high-visibility quantum interference between two independent semiconductor quantum dots, an important step toward scalable quantum networks. The observed interference visibility is up to 93%, paving the way for solid-state quantum networks with distances over 300 km.

Apple iPhone 17 Pro

Apple iPhone 17 Pro delivers top performance and advanced cameras for field documentation, data collection, and secure research communications.

Microlaser chip adds new dimensions to quantum communication

Researchers at Penn Engineering have created a chip that outstrips existing quantum communications hardware, communicating in qudits and doubling the quantum information space. The technology enables significant advances in quantum cryptography, raising the maximum secure key rate for information exchange.

Uncovering the massive quantum mysteries of black holes

Researchers at the University of Queensland have confirmed black hole quantum properties, including superposition and wildly different masses simultaneously. The study reinforces early theories by Jacob Bekenstein, postulating that black holes can only have specific mass values within certain bands or ratios.

A perfect trap for light

Researchers from TU Wien and Hebrew University develop 'light trap' that allows complete absorption of light in thin layers using mirrors and lenses. The system works by steering the light beam into a circle and then superimposing it on itself, blocking any escape.

Meta Quest 3 512GB

Meta Quest 3 512GB enables immersive mission planning, terrain rehearsal, and interactive STEM demos with high-resolution mixed-reality experiences.

Master equation to boost quantum technologies

Physicists have developed a 'master equation' to understand feedback control at the quantum level, enabling precise real-time control over quantum systems. This breakthrough has the potential to revolutionize quantum technologies by exploiting quantum effects and mitigating fragile system properties.

Quantum control for advanced technology: Past and present

A new review paper assesses recent progress in controlling quantum systems and applies it to emerging technologies, highlighting the need for a unified theoretical framework. The authors identify roadblocks that must be overcome to manifest a future quantum technological landscape.

A roadmap for the future of quantum simulation

The paper explores near- and medium-term possibilities for quantum simulation on analogue and digital platforms to evaluate its potential. Quantum simulation has promising applications in materials science, high-energy physics, and quantum chemistry.

A quantum wave in two crystals

A team of scientists has successfully built a neutron interferometer using two separate crystals, a major breakthrough in quantum physics. This achievement opens up new possibilities for quantum measurements and research on quantum effects in a gravitational field.

Garmin GPSMAP 67i with inReach

Garmin GPSMAP 67i with inReach provides rugged GNSS navigation, satellite messaging, and SOS for backcountry geology and climate field teams.

Rice lab’s quantum simulator delivers new insight

Physicists at Rice University have created a quantum simulator that reveals the behavior of electrons in one-dimensional wires, shedding light on spin-charge separation. The study's findings have implications for quantum computing and electronics with atom-scale wires.

One particle on two paths: Quantum physics is right

Researchers at TU Wien and Hiroshima University have corrected a long-standing flaw in the double-slit experiment, proving that individual particles can move along multiple paths at once. By detecting a single neutron, they were able to determine its presence on each path with high accuracy.

Henry Yuen wins NSF CAREER Award

Assistant Professor Henry Yuen at Columbia University will receive a $675,000 grant to develop verification protocols for entanglement theory and explore broader mathematical applications. His work aims to solve fundamental problems in computer science, mathematics, and physics using quantum entanglement.

Apple iPad Pro 11-inch (M4)

Apple iPad Pro 11-inch (M4) runs demanding GIS, imaging, and annotation workflows on the go for surveys, briefings, and lab notebooks.

Artificial neurons go quantum with photonic circuits

Researchers at the University of Vienna have created a quantum memristor that combines artificial intelligence and quantum computing. The device uses single photons to achieve memristive behavior, which can be used for learning on both classical and quantum tasks.

New world record for qubit storage

A UNIGE team has successfully stored a quantum bit for 20 milliseconds in a crystal-based memory. This achievement marks a major step towards the development of long-distance quantum telecommunications networks.

Chaining atoms together yields quantum storage

Researchers at Caltech developed a novel approach for quantum storage using nuclear spins, which can effectively chain up several atoms to store information. The system utilizes ytterbium ions and surrounding vanadium atoms to create a reliable quantum memory.

Scientists visualize electron crystals in a quantum superposition

Researchers use scanning tunneling microscopes to visualize electrons in graphene, discovering crystal structures that exhibit spatial periodicity corresponding to quantum superposition. These findings shed light on the complex quantum phases electrons can form due to their interactions.

Super fast quantum battery

Researchers have developed a quantum battery with a counter-intuitive property where recharge time decreases with increasing battery capacity. This leads to a hyper-fast charge that can be applied in various scientific and technological fields such as wireless chargers, solar cells, and cameras.

Davis Instruments Vantage Pro2 Weather Station

Davis Instruments Vantage Pro2 Weather Station offers research-grade local weather data for networked stations, campuses, and community observatories.

In quantum mechanics, not even time flows as you might expect it to

A team of physicists discovered that quantum systems can exhibit superposition of forward and backward time flows, leading to complex laws governing time flow. In certain cases with small entropy, observing the consequences of a system's evolution along both temporal directions becomes physically possible.

AmScope B120C-5M Compound Microscope

AmScope B120C-5M Compound Microscope supports teaching labs and QA checks with LED illumination, mechanical stage, and included 5MP camera.

In the quantum realm, not even time flows as you might expect

A new study shows that quantum systems can exist in a superposition of forward and backward time flows, blurring the traditional concept of time. This phenomenon has practical implications for quantum thermodynamics, potentially offering advantages in thermal machines and refrigerators.

Apple MacBook Pro 14-inch (M4 Pro)

Apple MacBook Pro 14-inch (M4 Pro) powers local ML workloads, large datasets, and multi-display analysis for field and lab teams.

Russian physicists mix classical light with half a photon on a qubit

A Russian-U.K. research team has proposed a theoretical description for the new effect of quantum wave mixing involving classical and nonclassical states of microwave radiation. The study builds on earlier experiments on artificial atoms, which serve as qubits for quantum computers and probes fundamental laws of nature.

Astonishing quantum experiment in Science raises questions

A new experiment demonstrates the stability of quantum interactions between coupled atoms under electron bombardment. The findings suggest that special quantum states may be realized in quantum computers more easily than previously thought.

Scientists overhear two atoms chatting

Researchers at Delft University of Technology intercept a chat between two atoms, demonstrating perfect superposition and entangled quantum states. This breakthrough has significant implications for research on quantum bits and may lead to new experimental possibilities.

Sky & Telescope Pocket Sky Atlas, 2nd Edition

Sky & Telescope Pocket Sky Atlas, 2nd Edition is a durable star atlas for planning sessions, identifying targets, and teaching celestial navigation.

Is the past (and future) there when nobody looks?

Researchers investigate the limits of quantum theory in describing an observer's experience, leading to a 'no-go theorem' for the persistent reality of Wigner's friend perception. The study challenges traditional assumptions about the nature of reality and raises questions about the reliability of an observer's predictions.

A molecule that responds to light

Researchers at KIT and Chimie ParisTech/CNRS create light-addressable qubit using europium(III) rare-earth ions, advancing quantum computer development. The molecule's nuclear spin levels can be polarized with light, enabling efficient processing of data in parallel.

Breakthrough lays groundwork for future quantum networks

Researchers successfully transferred entangled qubit states through a communication cable, paving the way for future quantum networks. The team achieved entanglement amplification via the cable, using superconducting qubits, and demonstrated a system that can send entangled quantum states with minimal loss of information.