Bluesky Facebook Reddit Email

Life Sciences

Comprehensive exploration of living organisms, biological systems, and life processes across all scales from molecules to ecosystems. Encompasses cutting-edge research in biology, genetics, molecular biology, ecology, biochemistry, microbiology, botany, zoology, evolutionary biology, genomics, and biotechnology. Investigates cellular mechanisms, organism development, genetic inheritance, biodiversity conservation, metabolic processes, protein synthesis, DNA sequencing, CRISPR gene editing, stem cell research, and the fundamental principles governing all forms of life on Earth.

447,757 articles | 2542 topics

Health and Medicine

Comprehensive medical research, clinical studies, and healthcare sciences focused on disease prevention, diagnosis, and treatment. Encompasses clinical medicine, public health, pharmacology, epidemiology, medical specialties, disease mechanisms, therapeutic interventions, healthcare innovation, precision medicine, telemedicine, medical devices, drug development, clinical trials, patient care, mental health, nutrition science, health policy, and the application of medical science to improve human health, wellbeing, and quality of life across diverse populations.

431,843 articles | 751 topics

Social Sciences

Comprehensive investigation of human society, behavior, relationships, and social structures through systematic research and analysis. Encompasses psychology, sociology, anthropology, economics, political science, linguistics, education, demography, communications, and social research methodologies. Examines human cognition, social interactions, cultural phenomena, economic systems, political institutions, language and communication, educational processes, population dynamics, and the complex social, cultural, economic, and political forces shaping human societies, communities, and civilizations throughout history and across the contemporary world.

260,756 articles | 745 topics

Physical Sciences

Fundamental study of the non-living natural world, matter, energy, and physical phenomena governing the universe. Encompasses physics, chemistry, earth sciences, atmospheric sciences, oceanography, materials science, and the investigation of physical laws, chemical reactions, geological processes, climate systems, and planetary dynamics. Explores everything from subatomic particles and quantum mechanics to planetary systems and cosmic phenomena, including energy transformations, molecular interactions, elemental properties, weather patterns, tectonic activity, and the fundamental forces and principles underlying the physical nature of reality.

257,913 articles | 1552 topics

Applied Sciences and Engineering

Practical application of scientific knowledge and engineering principles to solve real-world problems and develop innovative technologies. Encompasses all engineering disciplines, technology development, computer science, artificial intelligence, environmental sciences, agriculture, materials applications, energy systems, and industrial innovation. Bridges theoretical research with tangible solutions for infrastructure, manufacturing, computing, communications, transportation, construction, sustainable development, and emerging technologies that advance human capabilities, improve quality of life, and address societal challenges through scientific innovation and technological progress.

225,386 articles | 998 topics

Scientific Community

Study of the practice, culture, infrastructure, and social dimensions of science itself. Addresses how science is conducted, organized, communicated, and integrated into society. Encompasses research funding mechanisms, scientific publishing systems, peer review processes, academic ethics, science policy, research institutions, scientific collaboration networks, science education, career development, research programs, scientific methods, science communication, and the sociology of scientific discovery. Examines the human, institutional, and cultural aspects of scientific enterprise, knowledge production, and the translation of research into societal benefit.

193,043 articles | 157 topics

Space Sciences

Comprehensive study of the universe beyond Earth, encompassing celestial objects, cosmic phenomena, and space exploration. Includes astronomy, astrophysics, planetary science, cosmology, space physics, astrobiology, and space technology. Investigates stars, galaxies, planets, moons, asteroids, comets, black holes, nebulae, exoplanets, dark matter, dark energy, cosmic microwave background, stellar evolution, planetary formation, space weather, solar system dynamics, the search for extraterrestrial life, and humanity's efforts to explore, understand, and unlock the mysteries of the cosmos through observation, theory, and space missions.

29,662 articles | 175 topics

Research Methods

Comprehensive examination of tools, techniques, methodologies, and approaches used across scientific disciplines to conduct research, collect data, and analyze results. Encompasses experimental procedures, analytical methods, measurement techniques, instrumentation, imaging technologies, spectroscopic methods, laboratory protocols, observational studies, statistical analysis, computational methods, data visualization, quality control, and methodological innovations. Addresses the practical techniques and theoretical frameworks enabling scientists to investigate phenomena, test hypotheses, gather evidence, ensure reproducibility, and generate reliable knowledge through systematic, rigorous investigation across all areas of scientific inquiry.

21,889 articles | 139 topics

Mathematics

Study of abstract structures, patterns, quantities, relationships, and logical reasoning through pure and applied mathematical disciplines. Encompasses algebra, calculus, geometry, topology, number theory, analysis, discrete mathematics, mathematical logic, set theory, probability, statistics, and computational mathematics. Investigates mathematical structures, theorems, proofs, algorithms, functions, equations, and the rigorous logical frameworks underlying quantitative reasoning. Provides the foundational language and tools for all scientific fields, enabling precise description of natural phenomena, modeling of complex systems, and the development of technologies across physics, engineering, computer science, economics, and all quantitative sciences.

3,023 articles | 113 topics

Light switches made of ultra-thin semiconductor layers

A nanostructure composed of silver and an atomically thin semiconductor layer can be turned into an ultrafast switching mirror device, displaying properties of both light and matter. This discovery could lead to dramatically increased information transmission rates in optical data processing.

Aranet4 Home CO2 Monitor

Aranet4 Home CO2 Monitor tracks ventilation quality in labs, classrooms, and conference rooms with long battery life and clear e-ink readouts.

Heidelberg physicists bridge worlds of quantum matter

Researchers at Heidelberg University developed a new theoretical framework that connects two fundamental domains of modern quantum physics, describing the emergence of quasiparticles in systems with both mobile and static impurities. The new theory explains how quasiparticles form even in systems with extremely heavy impurities.

Listening to the 'whispers' of electrons and crystals: A quantum discovery

Researchers at Tohoku University have discovered a universal quantum rule governing electron-phonon coupling strength, which is linked to the fine-structure constant. The study reveals that this strength is quantized and universally applies to crystals, with implications for designing materials with tailored properties.

Unexpectedly high heat transfer in the nanoworld

Researchers found that heat transfer values increase dramatically at distances less than ten nanometres, exceeding theoretical predictions by a factor of one hundred. This phenomenon challenges current understanding of heat transfer in the nanometre range.

Apple iPhone 17 Pro

Apple iPhone 17 Pro delivers top performance and advanced cameras for field documentation, data collection, and secure research communications.

Keeping the photon in the dark

Researchers at the University of Innsbruck have developed a versatile method to control dark excitons in semiconductor quantum dots using chirped laser pulses and magnetic fields. This allows for the storage and manipulation of excitons, enabling new opportunities for quantum memory control and entangled photon pair generation.

Luminous magnets

Researchers visualized new quantum phenomenon: luminous excitons appearing on surface of antiferromagnetic semiconductor CrSBr. Excitons are created when photons strike the material, absorbing light and storing energy.

Garmin GPSMAP 67i with inReach

Garmin GPSMAP 67i with inReach provides rugged GNSS navigation, satellite messaging, and SOS for backcountry geology and climate field teams.

‘Cosmic radio’ could find dark matter in 15 years

Researchers at King's College London and Harvard University develop a detector that can identify axions, leading potential candidates for dark matter. The Axion Quasiparticle (AQ) technology has the potential to discover dark matter in five years with further development.

New discovery by Mizzou scientists redefines magnetism

Researchers Carsten Ullrich and Deepak Singh have discovered a new type of quasiparticle in all magnetic materials, challenging previous understanding of magnetism. This finding could lead to the development of faster, smarter, and more energy-efficient electronics.

Particle that only has mass when moving in one direction observed for first time

Researchers at Penn State and Columbia University have observed a type of quasiparticle called a semi-Dirac fermion that has mass when moving in one direction but not in the other. The discovery, made using a technique called magneto-optical spectroscopy, could lead to advances in emerging technologies such as batteries and sensors.

Beat the heat with radiative cooling

Researchers from the University of Tokyo have developed a novel approach to manage waste heat in microcircuits by adding a tiny coating of silicon dioxide. This increases the rate of heat dissipation, allowing for faster cooling and potentially leading to smaller and cheaper electronic devices.

SAMSUNG T9 Portable SSD 2TB

SAMSUNG T9 Portable SSD 2TB transfers large imagery and model outputs quickly between field laptops, lab workstations, and secure archives.

Diamonds are a chip's best friend

Researchers at Kyoto University have determined the magnitude of spin-orbit interaction in acceptor-bound excitons in a semiconductor. The study revealed two triplets separated by a spin-orbit splitting of 14.3 meV, supporting the hypothesis that two positively charged holes are more strongly bound than an electron-and-hole pair.

The secret life of an electromagnon

Scientists have discovered how atoms and spins move together in electromagnons, a hybrid excitation that can be controlled with light. The study used time-resolved X-ray diffraction to reveal the atomic motions and spin movements, showing that atoms move first and then the spins fractionally later.

Creality K1 Max 3D Printer

Creality K1 Max 3D Printer rapidly prototypes brackets, adapters, and fixtures for instruments and classroom demonstrations at large build volume.

‘Strange metal’ is strangely quiet in noise experiment

Rice physicists find that a 'strange metal' quantum material exhibits greatly suppressed shot noise, suggesting unconventional charge transport mechanisms. The study provides direct empirical evidence for the idea that electricity may flow through strange metals in an unusual liquidlike form.

Interacting polarons

Scientists generate multiple quasiparticles simultaneously in a quantum gas and observe their complex interactions, including attractive and repulsive behavior. Quantum statistics plays a crucial role in these interactions, which are essential for understanding fundamental mechanisms of nature.

Celestron NexStar 8SE Computerized Telescope

Celestron NexStar 8SE Computerized Telescope combines portable Schmidt-Cassegrain optics with GoTo pointing for outreach nights and field campaigns.

Solving quantum mysteries: New insights into 2D semiconductor physics

Researchers from Monash University have introduced a new theoretical study on quantum impurities, exploring their behavior in two-dimensional semiconductors. The 'quantum virial expansion' method sheds light on the complex interactions between impurities and their surroundings in 2D materials.

Uncovering universal physics in the dynamics of a quantum system

New experiments with ultra-cold atomic gases show that quantum systems composed of many particles change over time following a sudden energy influx. The findings reveal a universality in the behavior of these systems, shedding light on how they evolve and interact.

Google Quantum AI braids non-Abelian anyons for the first time

Researchers at Google Quantum AI have successfully observed non-Abelian anyons, a type of particle predicted to break certain rules in physics. This breakthrough enables the creation of topological quantum computers, which can perform robust operations despite noise and errors.

CalDigit TS4 Thunderbolt 4 Dock

CalDigit TS4 Thunderbolt 4 Dock simplifies serious desks with 18 ports for high-speed storage, monitors, and instruments across Mac and PC setups.

Light shaped as a smoke ring behaves like a particle

Researchers report the discovery of photonic hopfions, a new family of 3D topological solitons with freely tunable textures and numbers. These structures exhibit robust topological protection, making them suitable for applications in optical communications, quantum technologies, and metrology.

At the edge of graphene-based electronics

Georgia Tech researchers developed a new nanoelectronics platform based on graphene, enabling smaller devices, higher speeds, and less heat. The platform may lead to the discovery of a new quasiparticle, potentially exploiting the elusive Majorana fermion.

Researchers realize remote tuning of lifetime of coupled dirac plasmons

Researchers have enabled remote tuning of coupled Dirac plasmon excitations in graphene by designing an additional damping pathway through adjusting the Fermi energy level. The results provide fresh concepts for active control of other quasiparticle lifetimes and applications in nanophotonics.

Fluke 87V Industrial Digital Multimeter

Fluke 87V Industrial Digital Multimeter is a trusted meter for precise measurements during instrument integration, repairs, and field diagnostics.

Trapping polaritons in an engineered quantum box

Australian researchers have engineered a quantum box for polaritons in a two-dimensional material, achieving large polariton densities and a partially 'coherent' quantum state. The novel technique allows researchers to access striking collective quantum phenomena and enable ultra-energy-efficient technologies.

A drop in the sea of electrons

Scientists at Swinburne University of Technology and FLEET collaborators observe and explain signatures of Fermi polaron interactions in atomically-thin WS2 using ultrafast spectroscopy. Repulsive forces arise from phase-space filling, while attractive forces lead to cooperatively bound exciton-exciton-electron states.

Topological materials become switchable

Researchers have successfully switched on and off topological states in a material, exploiting the interaction of electrons to manipulate their behavior. The discovery opens up new possibilities for technical applications, including quantum computers and sensor technology.

Scientists see spins in a 2D magnet

Researchers at Columbia University have discovered a way to visualize magnons in a 2D material, CrSBr, by pairing them with excitons that emit light. This breakthrough enables the observation of tiny changes in magnon spins, potentially leading to the development of more efficient quantum information networks.

Apple iPad Pro 11-inch (M4)

Apple iPad Pro 11-inch (M4) runs demanding GIS, imaging, and annotation workflows on the go for surveys, briefings, and lab notebooks.

Building blocks of the future for photovoltaics

A research team from the University of Göttingen has observed the build-up of dark Moiré interlayer excitons for the first time using femtosecond photoemission momentum microscopy. This breakthrough allows scientists to study the optoelectronic properties of new materials in unprecedented detail.

Scientists capture the fleeting dance of moiré excitons

Researchers have imaged and measured the two parts of a unique particle called moiré exciton, extending their lifespan. They found that excitons are localized in tiny pockets of around 1.8 nanometers, forming in places where energy is minimal.

Suppressing the Auger recombination process in quantum dots

The study reveals that manipulating the transition dipole moment of excitons in quantum dots can suppress Auger recombination. By combining with external structures, researchers achieved a new way to control the nonradiative process, potentially leading to improved efficiency of QD-based devices.

Davis Instruments Vantage Pro2 Weather Station

Davis Instruments Vantage Pro2 Weather Station offers research-grade local weather data for networked stations, campuses, and community observatories.

A-list candidate for fault-free quantum computing delivers surprise

Physicists at Rice University have found telltale signs of antiferromagnetic spin fluctuations coupled to superconductivity in uranium ditelluride, a rare material promising fault-free quantum computing. The discovery upends the leading explanation of how this state of matter arises in the material.

Moments of silence point the way towards better superconductors

Scientists at Aalto University found that Cooper pairs break in bursts with long periods of silence, and the rate of these events decreases over time. This discovery provides important clues about the source of energy that breaks Cooper pairs and could lead to improvements in superconductor devices.

Topological valley Hall edge solitons in photonics

Researchers discovered a novel topological edge soliton that inherits topological protection from its linear counterpart, enabling robust and localized light beams. This breakthrough is achieved through nonlinear photorefractive lattices harnessing the valley Hall effect, without requiring an external magnetic field.

AmScope B120C-5M Compound Microscope

AmScope B120C-5M Compound Microscope supports teaching labs and QA checks with LED illumination, mechanical stage, and included 5MP camera.

CityU scientist hunted down the first unpaired Weyl magnetic monopole

A City University of Hong Kong physicist has observed the first unpaired singular Weyl magnetic monopole in a specific kind of single crystalline solid, defying the Nielsen-Ninomiya no-go theorem. The discovery opens up new avenues for understanding bulk topological properties and potential applications in spintronics.

Swirlonic super particles baffle physicists

Researchers found that swirlonic super particles move with constant velocity, proportional to applied force, violating Newton's Law. This phenomenon has practical applications in artificial intelligence, space data, and robotics, particularly in self-assembly.

Perfect transmission through barrier using sound

A new study by the University of Hong Kong has experimentally proven the existence of Klein tunneling, where relativistic particles can pass through barriers with 100% transmission. This breakthrough has significant implications for fundamental physics and potential applications in sound manipulation and acoustic signal processing.

Temperature evolution of impurities in a quantum gas

Researchers have made a groundbreaking discovery about the role of heat in quantum impurity studies, extending our understanding of thermodynamics. The study reveals that two distinct experimental protocols probe the same information, providing new insights into quantum correlations.

Skyrmion dynamics and traverse mobility

Researchers have studied skyrmion behavior under dc and ac drives, discovering directional locking effects and enhanced transverse mobility. The study's findings could revolutionize computing and solve the mystery of ball lightning.

DJI Air 3 (RC-N2)

DJI Air 3 (RC-N2) captures 4K mapping passes and environmental surveys with dual cameras, long flight time, and omnidirectional obstacle sensing.

Quantum transition makes electrons behave as if they lack spin

Physicists observe unusual quantum critical point in a heavy fermion compound, breaking the Kondo effect and exhibiting strange metal behavior. The discovery could lead to the creation of new sustainable materials for quantum information devices and superconductors.

Finding Majoranas

Researchers at UCSB have made a breakthrough in generating Majorana quasiparticles, which are essential for topological quantum computing. By using 'hashtag'-shaped nanowires, the team has successfully coaxed these exotic states into existence, paving the way for braiding and potentially revolutionizing quantum information processing.

Spotting the spin of the Majorana fermion under the microscope

Scientists at Princeton University have enhanced scanning tunneling microscopy to capture signals from the elusive Majorana fermion in iron wires on a lead crystal. The study detects a unique quantum property called spin, which distinguishes the particle from other quasi-particles and provides a signature of its existence.

Existence of a new quasiparticle demonstrated

Researchers have demonstrated the existence of a new quasiparticle called angulon, which forms when a rotating object interacts with its surrounding environment. The angulon theory can explain 20 years of observations and offers a quick and simple description for rotation of molecules in solvents.

Kestrel 3000 Pocket Weather Meter

Kestrel 3000 Pocket Weather Meter measures wind, temperature, and humidity in real time for site assessments, aviation checks, and safety briefings.

New paths into the world of quasiparticles

Researchers at the University of Innsbruck have developed a platform to investigate quasiparticles and entanglement propagation in quantum many-body systems. They can precisely initialize, control, and measure the states and properties of quasiparticle excitations.

Bending the rules

Yu Chen and colleagues find that superconductivity and dissipation can coexist under generic conditions in a universal manner, thanks to a peculiar nonequilibrium state of quasiparticles. The researchers also discover an unexpected property: when a magnetic field is applied, the superconducting area expands and is enhanced.

Progress in the fight against quantum dissipation

Scientists at Yale have confirmed a long-held theoretical prediction in physics, improving the energy storage time of a quantum switch. The breakthrough opens new frontiers for quantum information processing and measurement systems.

Uncovering unique properties in a 2-dimensional crystal

Scientists from Case Western Reserve University discovered unique spin and valley properties in a 2-dimensional crystal, leading to potential applications in optoelectronics and solar cells. The research found that charged quasi-particles called negative trions can be manipulated to change light absorption and emission.

Quasiparticle behavior in bose quantum liquids

Scientists have discovered that higher energies cause Bose quasiparticles to decay, leading to spectrum termination in certain materials. The research, conducted using neutron scattering measurements, confirms predictions made by Russian Nobel Prize-winning physicist L.D. Landau.

Meta Quest 3 512GB

Meta Quest 3 512GB enables immersive mission planning, terrain rehearsal, and interactive STEM demos with high-resolution mixed-reality experiences.