Bluesky Facebook Reddit Email

Life Sciences

Comprehensive exploration of living organisms, biological systems, and life processes across all scales from molecules to ecosystems. Encompasses cutting-edge research in biology, genetics, molecular biology, ecology, biochemistry, microbiology, botany, zoology, evolutionary biology, genomics, and biotechnology. Investigates cellular mechanisms, organism development, genetic inheritance, biodiversity conservation, metabolic processes, protein synthesis, DNA sequencing, CRISPR gene editing, stem cell research, and the fundamental principles governing all forms of life on Earth.

447,757 articles | 2542 topics

Health and Medicine

Comprehensive medical research, clinical studies, and healthcare sciences focused on disease prevention, diagnosis, and treatment. Encompasses clinical medicine, public health, pharmacology, epidemiology, medical specialties, disease mechanisms, therapeutic interventions, healthcare innovation, precision medicine, telemedicine, medical devices, drug development, clinical trials, patient care, mental health, nutrition science, health policy, and the application of medical science to improve human health, wellbeing, and quality of life across diverse populations.

431,843 articles | 751 topics

Social Sciences

Comprehensive investigation of human society, behavior, relationships, and social structures through systematic research and analysis. Encompasses psychology, sociology, anthropology, economics, political science, linguistics, education, demography, communications, and social research methodologies. Examines human cognition, social interactions, cultural phenomena, economic systems, political institutions, language and communication, educational processes, population dynamics, and the complex social, cultural, economic, and political forces shaping human societies, communities, and civilizations throughout history and across the contemporary world.

260,756 articles | 745 topics

Physical Sciences

Fundamental study of the non-living natural world, matter, energy, and physical phenomena governing the universe. Encompasses physics, chemistry, earth sciences, atmospheric sciences, oceanography, materials science, and the investigation of physical laws, chemical reactions, geological processes, climate systems, and planetary dynamics. Explores everything from subatomic particles and quantum mechanics to planetary systems and cosmic phenomena, including energy transformations, molecular interactions, elemental properties, weather patterns, tectonic activity, and the fundamental forces and principles underlying the physical nature of reality.

257,913 articles | 1552 topics

Applied Sciences and Engineering

Practical application of scientific knowledge and engineering principles to solve real-world problems and develop innovative technologies. Encompasses all engineering disciplines, technology development, computer science, artificial intelligence, environmental sciences, agriculture, materials applications, energy systems, and industrial innovation. Bridges theoretical research with tangible solutions for infrastructure, manufacturing, computing, communications, transportation, construction, sustainable development, and emerging technologies that advance human capabilities, improve quality of life, and address societal challenges through scientific innovation and technological progress.

225,386 articles | 998 topics

Scientific Community

Study of the practice, culture, infrastructure, and social dimensions of science itself. Addresses how science is conducted, organized, communicated, and integrated into society. Encompasses research funding mechanisms, scientific publishing systems, peer review processes, academic ethics, science policy, research institutions, scientific collaboration networks, science education, career development, research programs, scientific methods, science communication, and the sociology of scientific discovery. Examines the human, institutional, and cultural aspects of scientific enterprise, knowledge production, and the translation of research into societal benefit.

193,043 articles | 157 topics

Space Sciences

Comprehensive study of the universe beyond Earth, encompassing celestial objects, cosmic phenomena, and space exploration. Includes astronomy, astrophysics, planetary science, cosmology, space physics, astrobiology, and space technology. Investigates stars, galaxies, planets, moons, asteroids, comets, black holes, nebulae, exoplanets, dark matter, dark energy, cosmic microwave background, stellar evolution, planetary formation, space weather, solar system dynamics, the search for extraterrestrial life, and humanity's efforts to explore, understand, and unlock the mysteries of the cosmos through observation, theory, and space missions.

29,662 articles | 175 topics

Research Methods

Comprehensive examination of tools, techniques, methodologies, and approaches used across scientific disciplines to conduct research, collect data, and analyze results. Encompasses experimental procedures, analytical methods, measurement techniques, instrumentation, imaging technologies, spectroscopic methods, laboratory protocols, observational studies, statistical analysis, computational methods, data visualization, quality control, and methodological innovations. Addresses the practical techniques and theoretical frameworks enabling scientists to investigate phenomena, test hypotheses, gather evidence, ensure reproducibility, and generate reliable knowledge through systematic, rigorous investigation across all areas of scientific inquiry.

21,889 articles | 139 topics

Mathematics

Study of abstract structures, patterns, quantities, relationships, and logical reasoning through pure and applied mathematical disciplines. Encompasses algebra, calculus, geometry, topology, number theory, analysis, discrete mathematics, mathematical logic, set theory, probability, statistics, and computational mathematics. Investigates mathematical structures, theorems, proofs, algorithms, functions, equations, and the rigorous logical frameworks underlying quantitative reasoning. Provides the foundational language and tools for all scientific fields, enabling precise description of natural phenomena, modeling of complex systems, and the development of technologies across physics, engineering, computer science, economics, and all quantitative sciences.

3,023 articles | 113 topics

Terahertz microscope reveals the motion of superconducting electrons

Physicists have developed a new terahertz microscope that allows them to observe quantum vibrations in superconducting materials for the first time. The microscope enables researchers to study properties that could lead to room-temperature superconductors and identify materials that emit and receive terahertz radiation.

Apple iPhone 17 Pro

Apple iPhone 17 Pro delivers top performance and advanced cameras for field documentation, data collection, and secure research communications.

New superconducting thin film for quantum computer chips

Researchers at RIKEN Center for Emergent Matter Science have created a new superconducting thin film from iron telluride, suitable for quantum computing applications. The film's unique crystal structure, resulting from intentional misalignment of atomic layers, reduces lattice distortion and enables low-temperature superconductivity.

SAMSUNG T9 Portable SSD 2TB

SAMSUNG T9 Portable SSD 2TB transfers large imagery and model outputs quickly between field laptops, lab workstations, and secure archives.

GQ GMC-500Plus Geiger Counter

GQ GMC-500Plus Geiger Counter logs beta, gamma, and X-ray levels for environmental monitoring, training labs, and safety demonstrations.

Bringing superconducting nanostructures to 3D

An international team led by the Max Planck Institute for Chemical Physics of Solids created three-dimensional superconducting nanostructures with controlled superconducting states and demonstrated motion of nanoscale defects in a 3D bridge-like superconductor. This breakthrough enables the exploration of novel effects and development ...

MIT engineers advance toward a fault-tolerant quantum computer

Researchers achieved a type of coupling between artificial atoms and photons that could enable readout and processing of quantum information in a few nanoseconds. This breakthrough demonstrates the fundamental physics behind nonlinear light-matter coupling, a crucial step toward realizing fault-tolerant quantum computing.

Overcoming the quantum sensing barrier

Researchers have demonstrated a new quantum sensing technique that surpasses conventional methods by counteracting the limitation of decoherence. The study's coherence-stabilized protocol allows for improved sensitivity and detection of subtle signals, with up to 1.65 times better efficacy per measurement.

Nature of superconductivity in hydrogen-rich compounds

Researchers at Max Planck Institute developed a tunneling technique to probe superconducting gaps in H3S and D3S, discovering fully open gaps with values of approximately 60 meV and 44 meV. This achievement marks a revolutionary advance towards achieving high-temperature superconductivity.

Meta Quest 3 512GB

Meta Quest 3 512GB enables immersive mission planning, terrain rehearsal, and interactive STEM demos with high-resolution mixed-reality experiences.

New AI tool set to speed quest for advanced superconductors

A new study published in Newton uses artificial intelligence to identify complex quantum phases in materials, significantly speeding up research into quantum materials. The breakthrough applies machine-learning techniques to detect clear spectral signals, allowing for a fast and accurate snapshot of phase transitions.

Device enables direct communication among multiple quantum processors

Researchers at MIT created a photon-shuttling interconnect that facilitates remote entanglement, a key step toward developing practical quantum computers. The device enables all-to-all communication between multiple superconducting quantum processors, paving the way for more efficient and scalable quantum computing.

Fluke 87V Industrial Digital Multimeter

Fluke 87V Industrial Digital Multimeter is a trusted meter for precise measurements during instrument integration, repairs, and field diagnostics.

A simple way to control superconductivity

Researchers from RIKEN Center for Emergent Matter Science have discovered a groundbreaking way to control superconductivity by adjusting the twist angle of atomically thin layers. This allows for fine-tuning of the superconducting gap, which is crucial for optimizing Cooper pair behavior and developing high-functionality quantum device...

Zuchongzhi-3 sets new benchmark with 105-qubit superconducting quantum processor

Zuchongzhi-3 achieves quantum supremacy by outperforming classical supercomputers by 15 orders of magnitude, demonstrating the strongest quantum computational advantage in a superconducting system to date. The processor features 105 qubits and 182 couplers, with a coherence time of 72 μs and simultaneous gate fidelities exceeding 99%.

AmScope B120C-5M Compound Microscope

AmScope B120C-5M Compound Microscope supports teaching labs and QA checks with LED illumination, mechanical stage, and included 5MP camera.

The quest for room-temperature superconductors

Physicists at Queen Mary University of London have discovered that room-temperature superconductivity may be theoretically possible within the laws of our Universe. The research reveals that fundamental constants such as electron mass and Planck constant govern the upper limit of superconducting temperature, which comfortably includes ...

Light from artificial atoms

Researchers at TU Wien and ISTA have developed artificial atoms made of superconducting circuits that can be tuned to specific energy values. These 'artificial atoms' enable the storage and retrieval of light, opening up new possibilities for quantum experiments.

IEEE study reveals breakthroughs in high-performance photon detectors

Researchers developed a fabrication technique to overcome design challenges for scalable single-photon detectors, enabling ultra-fast detection of photons regardless of direction or polarization. The study provides a comprehensive guide to fabricating high-quality fractal SNSPDs with improved sensitivity and system detection efficiency.

When qubits learn the language of fiberoptics

Researchers developed a method to 'translate' optical signals to and from qubits, reducing cryogenic hardware needed. This breakthrough enables scalable quantum computers with increased qubit numbers, laying the foundation for room-temperature networks.

Apple AirPods Pro (2nd Generation, USB-C)

Apple AirPods Pro (2nd Generation, USB-C) provide clear calls and strong noise reduction for interviews, conferences, and noisy field environments.

CalDigit TS4 Thunderbolt 4 Dock

CalDigit TS4 Thunderbolt 4 Dock simplifies serious desks with 18 ports for high-speed storage, monitors, and instruments across Mac and PC setups.

Observation of the unusual metallic state in hydride superconductor A15-La4H23

Researchers have synthesized a novel hydride superconductor A15-La4H23 and observed an unusual metallic state under strong magnetic field conditions. The maximum superconducting critical temperature of 105 K was achieved with the pressure of 118 GPa, expanding our understanding of transport behavior in hydride superconductors.

Nikon Monarch 5 8x42 Binoculars

Nikon Monarch 5 8x42 Binoculars deliver bright, sharp views for wildlife surveys, eclipse chases, and quick star-field scans at dark sites.

Apple Watch Series 11 (GPS, 46mm)

Apple Watch Series 11 (GPS, 46mm) tracks health metrics and safety alerts during long observing sessions, fieldwork, and remote expeditions.

Unconventional interface superconductor could benefit quantum computing

Researchers developed a new superconductor material that uses a delocalized state of an electron to carry quantum information. The material could be used to create low-loss microwave resonators for quantum computing, which is critical for reducing decoherence and increasing the stability of qubits.

A breakthrough on the edge: One step closer to topological quantum computing

A team of experimental physicists has achieved a breakthrough in topological quantum computing by inducing superconducting effects in edge-only materials. This discovery could lead to the development of stable and efficient quantum computers, with potential applications in fields like quantum computing and technological advancements.

Aranet4 Home CO2 Monitor

Aranet4 Home CO2 Monitor tracks ventilation quality in labs, classrooms, and conference rooms with long battery life and clear e-ink readouts.

Kestrel 3000 Pocket Weather Meter

Kestrel 3000 Pocket Weather Meter measures wind, temperature, and humidity in real time for site assessments, aviation checks, and safety briefings.

MIT scientists tune the entanglement structure in an array of qubits

Researchers at MIT's EQuS group demonstrate a method to generate highly entangled states and shift between types of entanglement, including volume-law entanglement. This breakthrough offers a way to characterize a fundamental resource needed for quantum computing, enabling better understanding of information storage and processing.

Spintronics: A new path to room temperature swirling spin textures

Researchers at HZB have developed a new approach to create and stabilize complex spin textures like radial vortices in various compounds. By using superconducting structures to imprint domains and surface defects to stabilize them, they achieve stable magnetic microstructures that can be used for spintronic applications.

Anker Laptop Power Bank 25,000mAh (Triple 100W USB-C)

Anker Laptop Power Bank 25,000mAh (Triple 100W USB-C) keeps Macs, tablets, and meters powered during extended observing runs and remote surveys.

Tests show high-temperature superconducting magnets are ready for fusion

Researchers at MIT and Commonwealth Fusion Systems confirm their high-temperature superconducting magnet design meets the criteria for a compact fusion power plant. The successful test marks a significant milestone in fusion research, with the potential to usher in an era of virtually limitless power production.

Under pressure

Scientists have created a novel instrument that enables the precise measurement of superconductors under extreme pressure, overcoming existing limitations. The new tool uses quantum sensors integrated into a standard pressure-inducing device, allowing for direct imaging of the material's behavior.

GoPro HERO13 Black

GoPro HERO13 Black records stabilized 5.3K video for instrument deployments, field notes, and outreach, even in harsh weather and underwater conditions.

A physical qubit with built-in error correction

A team of researchers from the universities of Mainz, Olomouc, and Tokyo has successfully generated a logical qubit from a single light pulse that can correct errors. This breakthrough uses a photon-based approach to overcome the limitations of current quantum computing technology.

Tracking unconventional superconductivity

Researchers at HZDR have discovered a new superconductor that remains stable under extremely high magnetic fields. This breakthrough offers potential for groundbreaking technological advancements. The material, UTe2, exhibits spin-triplet superconductivity and can withstand magnetic fields up to 73 tesla, setting a record.

The A+ team tackles AI and quantum computing hardware

Researchers from Jefferson Lab, imec, and Cornell University collaborate to develop ultra-energy-efficient Superconducting Digital electronics for emerging AI and quantum computing technologies. The project aims to improve energy efficiency by 100X and enable both classical and quantum computing.

Rigol DP832 Triple-Output Bench Power Supply

Rigol DP832 Triple-Output Bench Power Supply powers sensors, microcontrollers, and test circuits with programmable rails and stable outputs.

Discovery of magnetic liquid crystal

Researchers have directly observed a magnetic analog of liquid crystal, known as the 'spin-nematic phase', in a quantum spin system. This discovery was made possible by advancements in synchrotron facility development and has significant implications for quantum computing and information technologies.

Myth of room temperature superconductivity in Lk-99 is shattered

Researchers have observed a first-order structural transition in the impurity phase of cuprous sulfide, providing evidence that LK-99 is non-superconducting. This finding disproves previous claims of room temperature superconductivity and has significant implications for technology.

Garmin GPSMAP 67i with inReach

Garmin GPSMAP 67i with inReach provides rugged GNSS navigation, satellite messaging, and SOS for backcountry geology and climate field teams.