As demand grows for high-energy, low-cost energy storage, lithium–sulfur (Li–S) batteries have emerged as a promising successor to conventional lithium-ion technology. However, their practical use is hindered by the polysulfide shuttle effect and sluggish redox kinetics. Now, researchers from Shanghai University, Tongji University, and USTC—led by Prof. Hongbin Zhao, Prof. Ting He, and Prof. Jia Yu—have developed a novel Te-modulated Fe single-atom catalyst (FeTe/NC) that significantly enhances both the rate performance and cycling stability of Li–S batteries.
Why This Catalyst Matters
Innovative Design and Features
Applications and Future Outlook
This breakthrough highlights the power of atomic-level engineering in overcoming long-standing challenges in Li–S chemistry. Stay tuned for more transformative research from Prof. Zhao, Prof. He, and Prof. Yu as they continue to push the boundaries of energy storage innovation.
Nano-Micro Letters
Experimental study
Te‑Modulated Fe Single Atom with Synergistic Bidirectional Catalysis for High‑Rate and Long–Cycling Lithium‑Sulfur Battery
11-Aug-2025