CHICAGO -- Experimental advances using lab-grown brain organoids are helping to clarify how best to use them as a model system to understand human brain development and diseases. The findings were presented at Neuroscience 2019, the annual meeting of the Society for Neuroscience and the world's largest source of emerging news about brain science and health.
Brain organoids are self-organizing, three-dimensional tissues grown from human stem cells guided to become the cell types and structures found in the brain. These "brains in dishes" display many features of the developing human brain, making them a promising model system to study processes of early human brain development. Recent studies have begun to use brain organoids to model interactions between brain regions, circuit formation, and neurodevelopmental diseases, but it remains unclear how well brain organoids mirror the complexity of human brain development.
Today's new findings show that:
"The advances presented today illustrate the exciting potential of using organoids to study brain processes in normal development and disease," said Hongjun Song, PhD, a professor at the University of Pennsylvania Perelman School of Medicine who studies neurogenesis and epigenetics. "However, we know they must be rigorously compared to the normally developing human brain to better understand their strengths and limitations."
This research was supported by national funding agencies including the National Institutes of Health and private funding organizations. Find out more about brain organoids on BrainFacts.org .
Related Neuroscience 2019 Presentation
Presidential Special Lecture- Understanding Cortical Development and Disease: From Embryos to Brain Organoids
Sunday, Oct. 20, 5:15 - 6:30 p.m., Hall B?
Organoids Press Conference Summary
Individual Brain Organoids Reproducibly Generate Cell Diversity of the Human Cerebral Cortex
Paola Arlotta, paola_arlotta@harvard.edu , Abstract 278.24
Human Induced Pluripotent Stem Cell-Derived 3D Organoids Combined With High-Content Screening Reveal Network-Level Phenotypes in a Subset Of Individuals With Idiopathic Autism
Michael Nestor, mnestor@hussmanautism.org , Abstract 535.05
Using Organoid Models to Study Human Cortical Development
Arnold Kriegstein, Arnold.Kriegstein@ucsf.edu , Abstract 444.03
###
About the Society for Neuroscience
The Society for Neuroscience is the world's largest organization of scientists and physicians devoted to understanding the brain and nervous system. The nonprofit organization, founded in 1969, now has nearly 37,000 members in more than 90 countries and over 130 chapters worldwide.