Bluesky Facebook Reddit Email

Decoding the glass 'genome' contributes to new functional materials

06.22.16 | American Chemical Society

Apple iPhone 17 Pro

Apple iPhone 17 Pro delivers top performance and advanced cameras for field documentation, data collection, and secure research communications.

From protecting our most valuable works of art to enabling smartphone displays, glass has become one of our most important materials. Making it even more versatile is the next challenge. Developing new glass compositions is largely a time-consuming, trial-and-error exercise. But now scientists have developed a way to decode the glass "genome" and design different compositions of the material without making and melting every possibility. Their report appears in ACS' journal Chemistry of Materials .

Despite the fact that humans have been making glass since antiquity, the material is still unpredictable. Scientists don't yet fully understand how the structure of glass affects its properties such as density, crack resistance and melting temperatures. This knowledge gap hinders progress in developing new products, such as lighter windows for more fuel-efficient cars. A major complicating factor is that just about any element can be incorporated into glass, which means a near-endless list of possible compositions, each with a different set of properties. Glass types have been made by trial-and-error, but this process takes a lot of time. Morten M. Smedskjaer of Aalborg University and colleagues at Corning Incorporated wanted to come up with a faster way to develop new glass compositions for large-scale use.

The researchers combined a range of computer models, from the empirical to those grounded in physics, to explore what they call the glass genome -- the possible combinations of materials and their resulting properties. Using these models, glass makers will be able to predict how various glass compositions will behave in the real world, and optimize them for industrial production much faster than before.

###

The abstract that accompanies this study is available here .

The American Chemical Society is a nonprofit organization chartered by the U.S. Congress. With nearly 157,000 members, ACS is the world's largest scientific society and a global leader in providing access to chemistry-related research through its multiple databases, peer-reviewed journals and scientific conferences. Its main offices are in Washington, D.C., and Columbus, Ohio.

To automatically receive news releases from the American Chemical Society, contact newsroom@acs.org .

Follow us: Twitter Facebook

Chemistry of Materials

Keywords

Article Information

Contact Information

Michael Bernstein
m_bernstein@acs.org

How to Cite This Article

APA:
American Chemical Society. (2016, June 22). Decoding the glass 'genome' contributes to new functional materials. Brightsurf News. https://www.brightsurf.com/news/1EKRGR21/decoding-the-glass-genome-contributes-to-new-functional-materials.html
MLA:
"Decoding the glass 'genome' contributes to new functional materials." Brightsurf News, Jun. 22 2016, https://www.brightsurf.com/news/1EKRGR21/decoding-the-glass-genome-contributes-to-new-functional-materials.html.