As global demand for sustainable energy surges, the performance ceiling of current battery technologies is increasingly tied to how efficiently ions and electrons move through the cell. Now, a multinational team led by Dr. Yuntong Sun (Nanyang Technological University), Dr. Zhendong Hao (Nanjing Institute of Technology) and Prof. Jong-Min Lee (DGIST) has delivered a panoramic review in Nano-Micro Letters showing how molecular and ionic dipole interactions can push that ceiling higher. The work provides a design playbook for next-generation high-energy batteries that are safer, longer-lasting and wide-temperature-capable.
Why Dipole Interactions Matter
Innovative Design and Features
Applications and Future Outlook
This roadmap underscores the pivotal role of dipole interactions in bridging materials science, electrochemistry and computation for future high-energy storage. Stay tuned for more field-advancing work from Prof. Sun, Prof. Hao and Prof. Lee’s teams!
Nano-Micro Letters
News article
Multifunctional Dipoles Enabling Enhanced Ionic and Electronic Transport for High‑Energy Batteries
5-Jan-2026