Chemists at Tokyo Institute of Technology (Tokyo Tech) propose an innovative way to achieve carbon capture using a rhenium-based electrocatalytic system that is capable of reducing low-concentration CO 2 (even 1%) with high selectivity and durability, which is a new potential technology to enable direct utilization of CO 2 in exhaust gases from heavy industries.
Scientists are closer to finding effective ways to reduce CO 2 levels -- a vital part of responding to climate change and energy efficiency challenges.
A study led by Osamu Ishitani of the Department of Chemistry, Tokyo Tech now demonstrates the advantages of applying electrocatalysis1 to capture low-concentration CO 2 .
In their study published in Chemical Science , Ishitani and colleagues including Hiromu Kumagai and Tetsuya Nishikawa drew on decades of work on honing the capabilities of a rhenium-based catalyst, and demonstrated its ability to reduce low-concentration CO 2 in the presence of a chemical called triethanolamine (TEOA).
Compared to many previous studies that have focused on reducing pure CO 2 , few have explored how to improve direct capture of low-concentration CO 2 -- a topic that warrants further investigation, considering that plants harness low concentrations of CO 2 (about 400 ppm, that is 0.04% of the atmosphere) and exhaust gases from heavy industries typically contain low levels of CO 2 (around 3-13%).
By avoiding the need for additional energy-consuming condensation processes, their strategy, if scaled up, could provide a more viable, environmentally friendly solution to CO 2 capture in many settings.
In a series of experiments to assess electrocatalytic activity, the researchers found that at a CO 2 concentration of 1%, the rhenium-based catalyst showed very high selectivity (94%) towards carbon monoxide (CO) formation.
A likely reason behind the high performance, the researchers say, is the efficient insertion of CO 2 into the rhenium-oxygen bond.
The researchers aim to continue systematically investigating promising strategies to help reduce real-world CO 2 levels.
###
The present study was supported by a CREST (Core Research for Evolutional Science and Technology) program on Molecular Technology backed by the Japan Science and Technology Agency (JST).
The paper has been selected as part of the 2018 ChemSci Pick of the Week Collection and a news story are posted on News & events of Royal Society of Chemistry.
Chemical Science