In an advance toward closing a major gap in defenses against terrorist attacks and other mass casualty events, scientists are reporting discovery of a promising substance that could be the basis for development of a better antidote for cyanide poisoning. Their report, which describes a potential antidote that could be self-administered, much like the medication delivered by allergy injection pens, appears in ACS' Journal of Medicinal Chemistry .
Steven E. Patterson, Ph.D., and colleagues at the University of Minnesota Center for Drug Design explain that the only existing antidotes for cyanide — recognized as a high-risk substance for potential use by terrorists — must be administered by intravenous infusion. That procedure requires highly trained paramedical personnel and takes time. Cyanide, however, is a fast-acting poison. In a situation involving mass casualties, only a limited number of victims could be saved. Patterson's team thus sought an antidote that could be administered by intra-muscular (IM) injection, a simpler procedure that could be administered rapidly to a large number of victims or even be self-administered.
Their report describes discovery of a substance, sulfanegen TEA, "which should be amenable for development as an IM injectable antidote suitable for treatment of cyanide victims in a mass casualty setting. Further development, including efficacy in lethal cyanide animal models, will be reported at a later date."
The authors acknowledge financial support from the National Institutes of Health through the National Institute of Neurological Disorders and Stroke (award #UO1NS058087-05).
The American Chemical Society is a nonprofit organization chartered by the U.S. Congress. With more than 163,000 members, ACS is the world's largest scientific society and a global leader in providing access to chemistry-related research through its multiple databases, peer-reviewed journals and scientific conferences. Its main offices are in Washington, D.C., and Columbus, Ohio.
To automatically receive news releases from the American Chemical Society, contact newsroom@acs.org .
Journal of Medicinal Chemistry