Bluesky Facebook Reddit Email

Sodium-ion batteries: New storage mechanism for cathode materials

07.21.25 | Helmholtz-Zentrum Berlin für Materialien und Energie

Garmin GPSMAP 67i with inReach

Garmin GPSMAP 67i with inReach provides rugged GNSS navigation, satellite messaging, and SOS for backcountry geology and climate field teams.


The performance of batteries depends on many factors. In particular, it depends on how ions are stored in electrode materials and whether they can be released again. This is because the charge carriers (ions) are relatively large and can cause an undesirable change in volume when they migrate into the electrode. This effect, known as 'breathing', impairs the battery's service life. The volume change is particularly pronounced when sodium ions migrate together with molecules from the organic electrolyte. This so-called co-intercalation has generally been considered detrimental to battery life. However, an international research team led by Philipp Adelhelm has now investigated cathode materials that enable the co-intercalation of ions and solvent molecules, allowing for faster charging and discharging processes.

In earlier studies, the team investigated co-intercalation in graphite anodes, demonstrating that sodium could migrate quickly and reversibly into and out of the electrolyte over many cycles when combined with glyme molecules. Nevertheless, proofing the same concept for cathode materials remained difficult. To tackle this challenge, the team explored a range of layered transition metal sulfides and identified solvent co-intercalation processes in cathode materials. ‘The process of co-intercalation could be used for developing very efficient and faster-charging batteries. This is why we wanted to investigate this topic in more detail,’ says Prof. Philipp Adelhelm.

The study incorporates detailed investigations from the last three years: Dr. Yanan Sun carried out volume change measurements in the cathode materials, performed structural analyses with synchrotron radiation at PETRA III at DESY, and investigated the electrochemical properties for a variety of combinations of electrodes and solvents. By support from theory, in collaboration with Dr. Gustav Åvall, important parameters could be identified that help predicting co-intercalation reactions in the future.

‘The co-intercalation process in cathode materials differs significantly from what happens in graphite anodes,’ explains Yanan Sun. While co-intercalation reactions in graphite anodes typically result in low-capacity electrodes, the loss of capacity caused by co-intercalation in the investigated cathode materials is very low. ‘Above all, certain cathode materials offer a huge advantage: the kinetics are super-fast, almost like a supercapacitor!’ Sun emphasises.

'The true beauty of co-intercalation reactions lies in their ability to offer a vast chemical landscape for designing novel layered materials for diverse applications.’ says Adelhelm. ‘Exploring the concept of co-intercalation was extremely risky because it is against classical battery knowledge. I was therefore very grateful to receive funding for this idea from the European Research Council through an ERC Consolidator Grant. The findings are the result of a collaborative effort from many talented people and would not have been possible without the opportunities provided by the joint research group on operando battery analysis financed by Helmholtz-Zentrum Berlin and Humboldt-University,’ he adds. ‘The recently announced Berlin Battery Lab between HZB, HU and BAM will provide even more opportunities for joint research projects in Berlin.‘

Nature Materials

10.1038/s41563-025-02287-7

Experimental study

Not applicable

Solvent co-intercalation in layered cathode active materials for sodium-ion batteries

18-Jul-2025

none

Keywords

Article Information

Contact Information

Antonia Roetger
Helmholtz-Zentrum Berlin für Materialien und Energie
antonia.roetger@helmholtz-berlin.de

Source

How to Cite This Article

APA:
Helmholtz-Zentrum Berlin für Materialien und Energie. (2025, July 21). Sodium-ion batteries: New storage mechanism for cathode materials. Brightsurf News. https://www.brightsurf.com/news/8J47XXYL/sodium-ion-batteries-new-storage-mechanism-for-cathode-materials.html
MLA:
"Sodium-ion batteries: New storage mechanism for cathode materials." Brightsurf News, Jul. 21 2025, https://www.brightsurf.com/news/8J47XXYL/sodium-ion-batteries-new-storage-mechanism-for-cathode-materials.html.