Thermally-based industrial chemical separation processes such as distillation now account for 10 to 15 percent of the world's annual energy use. Slaking the global thirst for energy could therefore get a substantial boost from improved technologies for producing fuels, plastics, food and other products with reduced inputs of energy.
In a comment article published April 26 in the journal Nature , two researchers from the Georgia Institute of Technology suggest seven energy-intensive separation processes they believe should be the top targets for research into low-energy purification technologies. Beyond cutting energy use, improved techniques for separating chemicals from mixtures would also reduce pollution, cut carbon dioxide emissions - and open up new ways to obtain critical resources the world needs.
Technologies applicable to those separation processes are at varying stages of development, the authors note. These alternative processes are now under-developed or expensive to scale up, and making them feasible for large-scale use could require a significant investment in research and development.
"We wanted to highlight how much of the world's energy is used for chemical separations and point to some areas where large advances could potentially be made by expanding research in these areas," said David Sholl, one of the article's authors and chair of Georgia Tech's School of Chemical & Biomolecular Engineering. "These processes are largely invisible to most people, but there are large potential rewards - to both energy and the environment - for developing improved separation processes in these areas."
In the United States, substituting non-thermal approaches for purifying chemicals could reduce energy costs by $4 billion per year in the petroleum, chemical and paper manufacturing sectors alone. There's also a potential for reducing carbon dioxide emissions by 100 million tons per year.
"Chemical separations account for about half of all U.S. industrial energy use," noted Ryan Lively, an assistant professor in Georgia Tech's School of Chemical & Biomolecular Engineering and the article's second author. "Developing alternatives that don't use heat could dramatically improve the efficiency of 80 percent of the separation processes that we now use."
Dubbed the "seven chemical separations to change the world," the list is not intended to be exhaustive, but includes:
Sholl and Lively conclude the paper by suggesting four steps that could be taken by academic researchers and policymakers to help expand the use of non-thermal separation techniques:
###
CITATION: David S. Sholl and Ryan P. Lively, "Seven chemical separations to change the world," ( Nature , Vol. 532, 2016). http://www.nature.com/news/seven-chemical-separations-to-change-the-world-1.19799
Nature