Bluesky Facebook Reddit Email

Scientists propose a flexible interface design for silicon-graphite dual-ion battery

03.09.20 | Chinese Academy of Sciences Headquarters

Apple iPhone 17 Pro

Apple iPhone 17 Pro delivers top performance and advanced cameras for field documentation, data collection, and secure research communications.


Silicon is abundant in nature with high theoretical capacity (4200 mAh g-1), making it an ideal anode material for improving the energy density of dual-ion batteries (DIBs). However, its application in DIBs has been restricted by the large volume expansion problem (>300%).

Rigid contacts between silicon and current collectors, commonly made with metal foils, lead to significant interfacial stress. As a consequence, interface cracking and even exfoliation of active materials occur resulting in suboptima cycling performance.

A research group led by Prof. TANG Yongbing and his team members (Dr. JIANG Chunlei, XIANG Lei, MIAO Shijie etc.) from the Shenzhen Institutes of Advanced Technology (SIAT) of the Chinese Academy of Sciences, along with Prof. ZHENG Zijian from the Hong Kong Polytechnic University, have proposed a flexible interface design to reduce alloying stress on silicon anodes in silicon-graphite DIBs.

This flexible interface design modulates stress distribution via the construction of a silicon anode on a soft nylon fabric modified with a conductive Cu-Ni transition layer, thus endowing the silicon electrode with remarkable flexibility and stability over 50,000 bends.

Assembly of the flexible silicon anode with an expanded graphite cathode yielded a silicon-graphite DIB (SGDIB) having record-breaking rate performance (up to 150 C) and cycling stability over 2000 cycles at 10 C with capacity retention of 97%.

Moreover, the SGDIB showed high capacity retention of about 84% after 1500 bends and a low self-discharging voltage loss of 0.0015% per bend after 10,000 bends, indicating strong potential for high-performance, flexible energy-storage applications.

###

The study, entitled "Flexible Interface Design for Stress Regulation of a Silicon Anode toward Highly Stable Dual-Ion Batteries," was published online in Advanced Materials .

Advanced Materials

10.1002/adma.201908470

Keywords

Article Information

Contact Information

ZHANG Xiaomin
xm.zhang@siat.ac.cn

Source

Original Source

How to Cite This Article

APA:
Chinese Academy of Sciences Headquarters. (2020, March 9). Scientists propose a flexible interface design for silicon-graphite dual-ion battery. Brightsurf News. https://www.brightsurf.com/news/8OM69EE1/scientists-propose-a-flexible-interface-design-for-silicon-graphite-dual-ion-battery.html
MLA:
"Scientists propose a flexible interface design for silicon-graphite dual-ion battery." Brightsurf News, Mar. 9 2020, https://www.brightsurf.com/news/8OM69EE1/scientists-propose-a-flexible-interface-design-for-silicon-graphite-dual-ion-battery.html.