Bluesky Facebook Reddit Email

Locations of Riemann Zeros accurately measured

08.16.21 | University of Science and Technology of China

Apple iPhone 17 Pro

Apple iPhone 17 Pro delivers top performance and advanced cameras for field documentation, data collection, and secure research communications.


The Riemann hypothesis raised in 1859 is one of the six unsolved Millennium problems, and its proof will greatly facilitate the understanding of the distribution laws of prime numbers. For a long time, there has been a growing academic focus on the non-trivial zeros of the Riemann zeta function. This enables physicists to reproduce prime numbers and inspire them to discover the essence of Riemann hypothesis with a feasible quantum approach.

To achieve the high-precision measurement of the locations of the Riemann zeros, Prof. GUO Guangcan's research team from the University of Science and Technology of China (USTC) of the Chinese Academy of Sciences (CAS) has adopted a trapped ion system. The team members including LI Chuanfeng, HUANG Yunfeng CUI Jinming and others, together with Spanish theoretical physicists Prof. Charles Creffield and Prof. German Sierra, measured experimentally the first 80 Riemann zeros by using a trapped-ion qubit in a Paul trap, which is periodically driven with microwave fields. The results were published in NPJ Quantum Information on July 14.

Among all possible solutions, the Hilbert–Pólya conjecture combines the Riemann zeta function with quantum theory. The conjecture assumes the existence of a quantum system in which the eigenvalues of the Hamiltonian quantities are consistent with the Riemann zeros. Researchers are attracted by this conjecture and discover many potential static Hamiltonians. But these static Hamiltonians are difficult to measure experimentally.

In this work, researchers chose not to prove the Riemann hypothesis, but to provide a physical embodiment of mathematical objects by using advanced quantum technology. In the trapped ion system, the ion was subjected to a time-periodic driving field, and its behavior was consequently described by Floquet theory. When an effect termed "coherent destruction of tunneling" (CDT) appeared, researchers could observe the freezing of the qubit's dynamics as the driving parameters were varied.

Thanks to high-fidelity quantum operations and a long coherence time, researchers achieved 30 driving periods and measured the first 80 Riemann zeros, an improvement of nearly two orders of magnitude over previous works. This work provides an important experimental basis for researchers to study the Hilbert–Pólya conjecture and to gain a deeper understanding of the connection between the Riemann hypothesis and quantum systems.

npj Quantum Information

10.1038/s41534-021-00446-7

Riemann zeros from Floquet engineering a trapped-ion qubit

13-Jul-2021

Keywords

Article Information

Contact Information

How to Cite This Article

APA:
University of Science and Technology of China. (2021, August 16). Locations of Riemann Zeros accurately measured. Brightsurf News. https://www.brightsurf.com/news/8OMMQZN1/locations-of-riemann-zeros-accurately-measured.html
MLA:
"Locations of Riemann Zeros accurately measured." Brightsurf News, Aug. 16 2021, https://www.brightsurf.com/news/8OMMQZN1/locations-of-riemann-zeros-accurately-measured.html.