Bluesky Facebook Reddit Email

BNAs improve performance of Li-ion batteries

06.27.18 | World Scientific

SAMSUNG T9 Portable SSD 2TB

SAMSUNG T9 Portable SSD 2TB transfers large imagery and model outputs quickly between field laptops, lab workstations, and secure archives.


Recent research published in a paper in NANO by a group of researchers from Northeastern University investigate the effect of hierarchical Bi 2 MoO 6 nanosheet arrays growing on three-dimensional Ni foam synthesized by one-step template-free route. The obtained BNAs used directly as binder-free integrated electrode for Li-ion batteries (LIBs) exhibits a super high reversible discharge capacity of 2311.7 μ Ah/cm 2 , and an excellent cycle stability.

With the rapid development of modern technology, a variety of portable electronic products have become the requirement of time. Li-ion batteries (LIBs) are the optimum selection by virtue of long cycle-life and high energy density properties. Meanwhile, LIBs are viewed as one of the most promising technology in various fields including the defense industry, space technology, electric vehicles and other fields. Nowadays, commercial LIBs mainly use graphite as the anode material. However, graphite can hardly provide the high capacity and high energy density necessary to satisfy the demand required for high power application of the next-generation LIBs due to its low theoretical specific capacity.

Thus, development of high-performance anode materials with high capacity as well as low insertion voltage is urgently needed. In terms of their high capacity, lots of metal oxides have attracted great interest in recent years. However, most metal oxides have low conductivity, high desertion voltage and structural instability, which result in poor rate capability, low power density and poor cycling stability. These shortcomings limit the application of metal oxides as anode materials for LIBs.

Among the numerous metal oxides, Bi 2 MoO 6 with high theoretical capacity (791 mAh/g) and low desertion voltage (<1.0 V) has been widely studied for its excellent photoelectric properties, but, there are few reports on the nanostructure Bi 2 MoO 6 as anode material for LIBs, not to mention the Bi 2 MoO 6 integrated electrode.

Thereafter, developing an effective strategy to prepare the Bi 2 MoO 6 integrated electrode and then exploring their electrochemical performance toward lithium is of great importance. To tackle the issue of low intrinsic conductivity, inferior cycling stability for Bi 2 MoO 6 as anode material, the researchers proclaim an effective strategy to the synthesis of hierarchical Bi 2 MoO 6 nanosheet arrays (BNAs) on the three-dimensional (3D) Ni foam by one-step template-free hydrothermal method. Remarkably, BNAs-integrated electrodes exhibit excellent electrochemical properties (a super high reversible discharge capacity of 2311.7 μ Ah/cm 2 , more than 500 times of cyclic stability), when used as the anode electrode for LIBs.

Undoubtedly, this work disclosed a new comprehension for improving the performance of LIBs with metal oxides as the anode material. It can improve the cycle stability and capacity of lithium-ion battery and is expected to be used in portable electronic devices in the future.

###

This work was financially supported by the National College Students Innovation Experiment Program (Grant No. 201710145000284), National Natural Science Foundation of China (Grant Nos. 51425401, 51690161 and 21701022), Fundamental Research Funds for the Central Universities (Grant No. N160903001), and the Project Funded by China Postdoctoral Science Foundation (Grant No. 2017T100181) and the Postdoctoral Science Foundation of Northeastern University (China, Grant No. 20170304).

The co-authors of this paper are Wei-Bin Chen, Li-Na Zhang, Zhi-Jing Ji, Ya-Dan Zheng, Shuang Yuan and Qiang Wang, all from Northeastern University.

Corresponding author is Shuang Yuan, yuanshuang@ciac.ac.cn .

For more insight into the research described, readers are invited to access the paper in NANO .

NANO

10.1142/S1793292018500662

Keywords

Article Information

Contact Information

Tay Yu Shan
World Scientific
ystay@wspc.com

Source

How to Cite This Article

APA:
World Scientific. (2018, June 27). BNAs improve performance of Li-ion batteries. Brightsurf News. https://www.brightsurf.com/news/8XG979M1/bnas-improve-performance-of-li-ion-batteries.html
MLA:
"BNAs improve performance of Li-ion batteries." Brightsurf News, Jun. 27 2018, https://www.brightsurf.com/news/8XG979M1/bnas-improve-performance-of-li-ion-batteries.html.