Bluesky Facebook Reddit Email

Ultraviolet light helps to realize light-controlled enhancement and fast stabilization of hot-electron photocurrent

09.06.21 | Hefei Institutes of Physical Science, Chinese Academy of Sciences

SAMSUNG T9 Portable SSD 2TB

SAMSUNG T9 Portable SSD 2TB transfers large imagery and model outputs quickly between field laptops, lab workstations, and secure archives.


Hot-electron photodetectors show poor photoelectric performance due to the limitation of the small number and low energy of hot electrons. Traditional phototransistors use electricity to drive the transport of hot electrons and control photocurrent. However, the existence of defects leads to a slow response rate, voltage drive leads to a significant increase in dark current, and an electrical drive system is required.

In a new search, a team led by Prof. FEI Guangtao and Prof. XU Shaohui from the Institute of Solid State Physics, Hefei Institutes of Physical Science realized enhancement and fast stabilization of hot-electron photocurrent of all-optical-input transistors with the regulation of ultraviolet light. The result was published on the Journal of Physical Chemistry C.

"We introduced an ultraviolet light (gate light) to regulate the hot-electron photocurrent, which is excited by infrared light (source light),” said LIU Shuli, first author of the paper, “due to Schottky barrier-tuning effect and trap-filling effect, hot-electron photocurrent in the Au electrode could be amplified tens of times, and response rate could also be improved.”

With the gate light increasing power, the enhanced photocurrent reaches a stable state quickly. It is beneficial to understand and regulate the surface state of semiconductors in optoelectronic fields.

Considering that this type of transistor can work without electric support, it can be used in special environments that prohibit the use of electricity. Moreover, this interesting feature will make devices more reliable and will meet the demands of energy-saving and low-carbon age.

Physical Chemistry

https://doi.org/10.1021/acs.jpcc.1c03364

Experimental study

Not applicable

All-Optical-Input Transistors with Light-Controlled Enhancement and Fast Stabilization of Hot-Electron Photocurrent

25-Aug-2021

Keywords

Article Information

Contact Information

Weiwei Zhao
Hefei Institutes of Physical Science, Chinese Academy of Sciences
annyzhao@ipp.ac.cn

Source

How to Cite This Article

APA:
Hefei Institutes of Physical Science, Chinese Academy of Sciences. (2021, September 6). Ultraviolet light helps to realize light-controlled enhancement and fast stabilization of hot-electron photocurrent. Brightsurf News. https://www.brightsurf.com/news/L59996R8/ultraviolet-light-helps-to-realize-light-controlled-enhancement-and-fast-stabilization-of-hot-electron-photocurrent.html
MLA:
"Ultraviolet light helps to realize light-controlled enhancement and fast stabilization of hot-electron photocurrent." Brightsurf News, Sep. 6 2021, https://www.brightsurf.com/news/L59996R8/ultraviolet-light-helps-to-realize-light-controlled-enhancement-and-fast-stabilization-of-hot-electron-photocurrent.html.