Bluesky Facebook Reddit Email

Ions in the machine: How simple liquids like water can perform complex calculations

01.11.22 | Osaka University

SAMSUNG T9 Portable SSD 2TB

SAMSUNG T9 Portable SSD 2TB transfers large imagery and model outputs quickly between field laptops, lab workstations, and secure archives.


Osaka, Japan – After many decades of astonishing developments, advances in semiconductor-based computing are beginning to slow as transistors reach their physical limits in size and speed. However, the requirements for computing continue to grow, especially in artificial intelligence, where neural networks often have several millions of parameters. One solution to this problem is reservoir computing, and a team of researchers led by Osaka University, with colleagues from the University of Tokyo and Hokkaido University, have developed a simple system based on electrochemical reactions in Faradic current that they believe will jump-start developments in this field.

Reservoir computing is a relatively recent idea in computing. Instead of traditional binary programs run on semiconductor chips, the reactions of a nonlinear dynamical system—the reservoir—are used to perform much of the calculation. Various nonlinear dynamical systems from quantum processes to optical laser components have been considered as reservoirs. In this study, the researchers looked at the ionic conductance of electrochemical solutions.

“Our simple testing device consists of 90 pairs of planar electrodes with an ionic solution dropped on its surface,” explains Professor Megumi Akai-Kasaya, lead author of the study. “The response voltage to the input voltage is then used as the response of the reservoir.” This voltage response is due to both the ionic currents that pass through the solution and the electrochemical current. This input–output relationship is both nonlinear and reproducible, which makes it suitable for use in reservoir computing. A unique multiway data acquisition system on the device controls the readout nodes, which enables parallel testing.

The researchers used the device to evaluate two liquids: polyoxometalate molecules in solution and deionized water. The system displayed a “feedforward connection” between nodes, regardless of which sample was used. However, there were differences. “The polyoxometalate solution increased the diversity of the response current, which makes it good at predicting periodic signals,” says Professor Akai-Kasaya. “But it turns out that deionized water is best for solving second-order nonlinear problems.” The good performance of these solutions demonstrates their potential for more complicated tasks, such as handwriting font recognition, isolated word recognition, and other classification tasks.

The researchers believe that proton or ion transfer with minimal electrochemical reactions over short durations has the potential for development as a more computationally powerful computing system that is low in cost and energy efficient. The simplicity of the proposed system opens up exciting new opportunities for developing computing systems based on electrochemical ion reactions.

###

The article, “Physical implementation of reservoir computing through electrochemical reaction,” was published in Advanced Science at DOI: https://doi.org/10.1002/advs.202104076

PIO Contact (Hokkaido University)

Name: Sohail Keegan Pinto

Organization: Hokkaido University (Website: https://www.global.hokudai.ac.jp/ ; Twitter: @HokkaidoUni

Office Phone: +81-11-706-2185

Cell Phone: Not Applicable

Email: en-press@general.hokudai.ac.jp

Researcher Contact information:

Professor Megumi Akai-Kasaya

Professor

Graduate School of Science

Osaka University

Tel: +81-668-506-082

Email: akai@chem.sci.osaka-u.ac.jp

Professor (LINAS)

Information Science and Technology (IST)

Hokkaido University

Tel: +81-11-706-6874

Email: akai@ist.hokudai.ac.jp

About Osaka University

Osaka University was founded in 1931 as one of the seven imperial universities of Japan and is now one of Japan's leading comprehensive universities with a broad disciplinary spectrum. This strength is coupled with a singular drive for innovation that extends throughout the scientific process, from fundamental research to the creation of applied technology with positive economic impacts. Its commitment to innovation has been recognized in Japan and around the world, being named Japan's most innovative university in 2015 (Reuters 2015 Top 100) and one of the most innovative institutions in the world in 2017 (Innovative Universities and the Nature Index Innovation 2017). Now, Osaka University is leveraging its role as a Designated National University Corporation selected by the Ministry of Education, Culture, Sports, Science and Technology to contribute to innovation for human welfare, sustainable development of society, and social transformation.

Website: https://resou.osaka-u.ac.jp/en

About Hokkaido University

Founded in 1876 as Sapporo Agricultural College, Hokkaido University is one of the oldest, largest, and most prestigious universities in Japan. The university attracts prospective students all around the globe with the diverse degree programs offered and the all year round scenic beauty. The campuses are located in the cities of Sapporo and Hakodate of Hokkaido and 21 facilities are spread throughout Hokkaido and mainland Japan, contributing towards the resolution of global issues.

Website: https://www.global.hokudai.ac.jp/

Advanced Science

10.1002/advs.202104076

Experimental study

Not applicable

Physical implementation of reservoir computing through electrochemical reaction

29-Dec-2021

Keywords

Article Information

Contact Information

Saori Obayashi
Osaka University
gi-strategy@cgin.osaka-u.ac.jp

Source

How to Cite This Article

APA:
Osaka University. (2022, January 11). Ions in the machine: How simple liquids like water can perform complex calculations. Brightsurf News. https://www.brightsurf.com/news/LDEEJMK8/ions-in-the-machine-how-simple-liquids-like-water-can-perform-complex-calculations.html
MLA:
"Ions in the machine: How simple liquids like water can perform complex calculations." Brightsurf News, Jan. 11 2022, https://www.brightsurf.com/news/LDEEJMK8/ions-in-the-machine-how-simple-liquids-like-water-can-perform-complex-calculations.html.